在当前的AI发展背景下,AI大厦需要新的地基,而这个地基的核心在于“非数据+数据”的深度融合。这种融合不仅是对传统数据基础设施的升级,更是对AI发展模式的重新定义。
1. 数据的重要性
数据是AI模型的基础,几乎所有AI模型都依赖于对数据中模式的学习。机器获得智能的过程本质上是对训练数据概率分布的建模与泛化。然而,随着AI的发展,传统数据基础设施面临诸多挑战,如数据碎片化、多模态数据处理复杂性等问题。
2. 非数据的作用
非数据(如非结构化数据,包括文本、图像、视频等)占全球数据的80%至90%,是AI的重要资源。这些数据能够提供丰富的上下文信息,支持多样化的AI应用,并推动行业创新。例如,非结构化数据在医疗影像分析、自然语言处理等领域发挥着关键作用。
3. 数据与非数据的融合
新的地基需要实现“非数据+数据”的深度融合,即“Data×AI”范式。这种融合能够解决行业数据流通难、多模态数据处理难、质量评估难等诸多问题。例如,OceanBase正在构建一个一体化的数据底座,支持多模态数据的融合与处理,打破数据次元壁。
4. 构建新的地基
新的地基需要具备分布式处理海量数据的能力,支持多种数据格式(包括结构化和非结构化数据),并提供SQL+AI混合计算和向量检索能力。这种一体化的数据底座将成为AI应用落地的关键,推动AI从简单的数据处理向更智能的决策支持转变。
总之,AI大厦的新地基需要在数据与非数据的融合中寻找突破,通过技术创新打破传统架构的局限,为AI的未来发展提供坚实支撑。
01-30
1644

12-25
7875

05-22