摘 要
随着电子商务的快速发展,用户评论已经成为了消费者购买决策的重要依据。本文旨在通过分析京东商城的用户评论数据,利用机器学习算法对其进行情感分析。为此,我们首先进行了数据收集和预处理,然后选取了多种情感分析算法进行比较,接着提取了有效的特征来表示情感信息,最后构建了情感分析模型并进行了评估。实验结果表明,我们的模型具有较高的准确性和召回率,能够有效地分析京东评论数据的情感倾向。
对于处理广泛的数据并整合到本地,Python爬虫有着自已强大的功能,面对京东评论数据情感分析,我们考虑借助Python爬虫的功能对其实现相应的处理,本文将详细论述将Python爬虫应用在京东评论数据调取有效数据的过程。
关键词:机器学习;情感分析;京东评论数据;Python爬虫;
Abstract
With the rapid development of e-commerce, user reviews have become an important basis for consumer purchasing decisions. This article aims to analyze user comment data on JD.com and use machine learning algorithms for sentiment analysis. To this end, we first conducted data collection and preprocessing, then selected multiple sentiment analysis algorithms for comparison, extracted effective features to represent sentiment information, and finally constructed an sentiment analysis model for evaluation. The experimental results show that our model has high accuracy and recall, and can effectively analyze the emotional tendencies of JD review data.
For processing a wide range of data and integrating it locally, Python crawlers have their own powerful functions. Faced with sentiment analysis of JD comment data, we consider using the functions of Python crawlers to implement corresponding processing. This article will discuss in detail the process of applying Python crawlers to retrieve effective data from JD comment data.
Keywords: machine learning; Emotional analysis; JD review data; Python programming language; Python crawler;
目录