基于机器学习的京东评论数据情感分析

摘 要

随着电子商务的快速发展,用户评论已经成为了消费者购买决策的重要依据。本文旨在通过分析京东商城的用户评论数据,利用机器学习算法对其进行情感分析。为此,我们首先进行了数据收集和预处理,然后选取了多种情感分析算法进行比较,接着提取了有效的特征来表示情感信息,最后构建了情感分析模型并进行了评估。实验结果表明,我们的模型具有较高的准确性和召回率,能够有效地分析京东评论数据的情感倾向。

对于处理广泛的数据并整合到本地,Python爬虫有着自已强大的功能,面对京东评论数据情感分析,我们考虑借助Python爬虫的功能对其实现相应的处理,本文将详细论述将Python爬虫应用在京东评论数据调取有效数据的过程。

关键词:机器学习;情感分析;京东评论数据;Python爬虫;

Abstract

With the rapid development of e-commerce, user reviews have become an important basis for consumer purchasing decisions. This article aims to analyze user comment data on JD.com and use machine learning algorithms for sentiment analysis. To this end, we first conducted data collection and preprocessing, then selected multiple sentiment analysis algorithms for comparison, extracted effective features to represent sentiment information, and finally constructed an sentiment analysis model for evaluation. The experimental results show that our model has high accuracy and recall, and can effectively analyze the emotional tendencies of JD review data.

For processing a wide range of data and integrating it locally, Python crawlers have their own powerful functions. Faced with sentiment analysis of JD comment data, we consider using the functions of Python crawlers to implement corresponding processing. This article will discuss in detail the process of applying Python crawlers to retrieve effective data from JD comment data.

Keywords: machine learning; Emotional analysis; JD review data; Python programming language; Python crawler;

目录

第1章 绪论

1.1 研究背景与意义

1.2 国内外研究现状

1.3 主要研究内容

第2章 数据收集与预处理

2.1 数据收集

2.2 数据预处理

2.2.1 数据清理

2.2.2 分词

2.2.3 特征提取

2.2.4 计算高频词

2.2.5 情感标注

2.2.6 格式转换

2.2.7 数据平衡

2.2.8 去重与扩充

2.2.9 评估与校验

情感分析算法选取

基于规则的方法

基于词典的方法

基于机器学习的方法

3.4 机器学习常见的分类算法介绍

特征提取与表示

4.1 词袋模型

TF-IDF(Term Frequency-Inverse Document Frequency)

情感词典法

4.4 词向量

4.5 句法结构

模型训练与评估

模型训练

朴素贝叶斯算法

支持向量机算法

模型验证与评估

结果分析与讨论

结果分析

准确性分析

召回率分析

F1值分析

潜在价值与改进空间

结论

参考文献

致 谢

  1. 绪论
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值