题目链接:http://codevs.cn/problem/1227/
题目大意:传k遍纸条
每个点拆成入和出,入向出连一条容量为1,费用为该点权值的边(表示选这个点,只能走一次)
再连一条容量为INF,费用0的边(选过就不再有贡献)
每个点的出向右和下的入连一条容量为INF费用为0的边
超级源连点(1,1)的入一条容量为k,费用0的边(传k遍),点(n,m)的出连向超级汇,容量INF,费用0
跑最大费用流
代码如下:
#include<cstring>
#include<ctype.h>
#include<cstdio>
#include<queue>
#define N 50020
#define INF 2147483647
using namespace std;
const int S=50001;
const int T=50002;
inline int read(){
int x=0,f=1;char c;
do c=getchar(),f=c=='-'?-1:f; while(!isdigit(c));
do x=(x<<3)+(x<<1)+c-'0',c=getchar(); while(isdigit(c));
return x*f;
}
queue<int>q;
int n,k,x,cost,top=1;
int d[N],fir[N];
bool b[N];
struct Edge{
int to,nex,k,v;
Edge(int _=0,int __=0,int ___=0,int ____=0):to(_),nex(__),k(___),v(____){}
}nex[250005];
inline int GetNum(int x,int y){
return (x-1)*n+y;
}
inline bool spfa(){
for(int i=0;i<=n*n*2;i++)
d[i]=-INF,b[i]=false;
d[T]=-INF;
d[S]=0;q.push(S);
while(!q.empty()){
int x=q.front();q.pop();
b[x]=false;
for(int i=fir[x];i;i=nex[i].nex)
if(nex[i].k && d[nex[i].to]<d[x]+nex[i].v){///最大费用
d[nex[i].to]=d[x]+nex[i].v;
if(!b[nex[i].to]) b[nex[i].to]=true,q.push(nex[i].to);
}
}
return d[T]!=-INF;
}
int dfs(int x,int v){
if(x==T || !v){
cost=cost+v*d[T];
return v;
}
b[x]=true;
int tmp=0;
for(int i=fir[x];i;i=nex[i].nex)
if(!b[nex[i].to] && d[nex[i].to]==d[x]+nex[i].v && nex[i].k){
int f=dfs(nex[i].to,min(v,nex[i].k));
v-=f;nex[i].k-=f;nex[i^1].k+=f;tmp+=f;
if(!v) break;
}
if(!tmp) d[x]=-INF;
return tmp;
}
inline void Dinic(){
while(spfa()) dfs(S,INF);
}
inline void add(int x,int y,int k,int v){
nex[++top]=Edge(y,fir[x],k,v);
fir[x]=top;
}
int main(){
n=read();k=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
x=read();
add(GetNum(i,j),GetNum(i,j)+n*n,1,x);
add(GetNum(i,j)+n*n,GetNum(i,j),0,-x);
add(GetNum(i,j),GetNum(i,j)+n*n,INF,0);
add(GetNum(i,j)+n*n,GetNum(i,j),0,0);
if(i+1<=n){
add(GetNum(i,j)+n*n,GetNum(i+1,j),INF,0);
add(GetNum(i+1,j),GetNum(i,j)+n*n,0,0);
}
if(j+1<=n){
add(GetNum(i,j)+n*n,GetNum(i,j+1),INF,0);
add(GetNum(i,j+1),GetNum(i,j)+n*n,0,0);
}
}
add(S,GetNum(1,1),k,0);add(GetNum(1,1),S,0,0);
add(GetNum(n,n)+n*n,T,INF,0);add(T,GetNum(n,n)+n*n,0,0);
Dinic();
printf("%d",cost);
return 0;
}