BZOJ[2733][HNOI2012]永无乡 Splay启发式合并

33 篇文章 0 订阅
11 篇文章 0 订阅

题目链接

题目大意及线段树合并解法在这里

每合并两个点,将它俩启发式合并
启发式合并,即把小的暴力往大的那里插
说按前序遍历插复杂度会极其优越??

第k大是平衡树基本操作

代码如下:

#include<algorithm>
#include<ctype.h>
#include<cstdio>
#define N 100050
using namespace std;
inline int read(){
    int x=0,f=1;char c;
    do c=getchar(),f=c=='-'?-1:f; while(!isdigit(c));
    do x=(x<<3)+(x<<1)+c-'0',c=getchar(); while(isdigit(c));
    return x*f;
}
int n,m,x,y,fx,fy,t;
int f[N],pre[N];
char s[26];
int Find(int x){
    return f[x]==x?f[x]:f[x]=Find(f[x]);
}
struct Node{
    Node *ch[2],*fa;
    int x,siz;
    Node(int);
    inline int dir(){
        if(fa->ch[0]==this) return 0;
        if(fa->ch[1]==this) return 1;
        return -1;
    }
    inline void maintain(){
        siz=ch[0]->siz+ch[1]->siz+1;
        return;
    }
    inline int cmp(int k){
        if(k==x) return -1;
        return k<x?0:1;
    }
}*null,*root[N],*tmp;
Node::Node(int _):x(_){
    siz=1;
    fa=ch[0]=ch[1]=null;
}
inline void init(){
    null=new Node(-1);
    null->ch[0]=null->ch[1]=null->fa=null;
    null->siz=0;
}
void print(Node *x){///Debug
    if(x==null) return;
    printf("%d  ",x->x);
    print(x->ch[0]);
    print(x->ch[1]);
}
inline void Rotate(Node *x,int d){
    Node *k=x->ch[d^1];
    x->ch[d^1]=k->ch[d];
    if(x->ch[d^1]!=null) x->ch[d^1]->fa=x;
    k->ch[d]=x;
    if(x->fa!=null) x->fa->ch[x->dir()]=k;
    k->fa=x->fa;x->fa=k;
    x->maintain();k->maintain();
}
inline void Splay(Node *x,Node *y,int num){
    while(x->fa!=y){
        if(x->fa->fa!=y && x->dir()==x->fa->dir())
            Rotate(x->fa->fa,x->dir()^1);
        Rotate(x->fa,x->dir()^1);
    }
    x->maintain();
    if(y==null) root[num]=x;
}
void Insert(Node *&x,int k,Node *fa){
    if(x==null){
        x=new Node(k);
        x->fa=fa;tmp=x;
        return;
    }
    int d=x->cmp(k);
    Insert(x->ch[d],k,x);
    x->maintain();
}
inline void AddNew(int x,int k){
    Insert(root[x],k,null);
    Splay(tmp,null,x);
}
int K_th(int k,Node *x){
    if(k==x->ch[0]->siz+1) return x->x;
    int d=k<=x->ch[0]->siz?0:1;
    return K_th(k-(d?x->ch[0]->siz+1:0),x->ch[d]);
}
Node *LowerPointer(Node *x,int k){
    if(x==null) return null;
    if(k>=x->x) return LowerPointer(x->ch[0],k);
    Node *t=LowerPointer(x->ch[1],k);
    return t==null?x:t;
}
Node *UpperPointer(Node *x,int k){
    if(x==null) return null;
    if(k<=x->x) return UpperPointer(x->ch[1],k);
    Node *t=UpperPointer(x->ch[0],k);
    return t==null?x:t;
}
inline void Delete(int k,int x){
    Node *a=LowerPointer(root[x],k),*b=UpperPointer(root[x],k);
    if(a==null && b==null){
        root[x]=null;
        return;
    }
    if(a==null){
        Splay(b,null,x);
        root[x]->ch[0]=null;
        root[x]->maintain();
        return;
    }
    if(b==null){
        Splay(a,null,x);
        root[x]->ch[1]=null;
        root[x]->maintain();
        return;
    }
    Splay(a,null,x);
    Splay(b,a,x);
    root[x]->ch[1]->ch[0]=null;
    root[x]->ch[1]->maintain();
    root[x]->maintain();
}
inline void Merge(int tx,int ty){
    if(tx==ty) return;
    int x=tx,y=ty;
    if(root[x]->siz<root[y]->siz) swap(x,y);
    while(root[y]->siz){
        int k=K_th(1,root[y]);
        Delete(k,y);
        AddNew(x,k);
    }
    f[y]=x;
}
int main(){
    init();
    n=read();m=read();
    for(int i=1;i<=n;i++){
        f[i]=pre[x=read()]=i;
        root[i]=null;
        AddNew(i,x);
    }
    for(int i=1;i<=m;i++){
        x=read();y=read();
        x=Find(x),y=Find(y);
        Merge(x,y);
    }
    m=read();
    for(int i=1;i<=m;i++){
        scanf("%s",s+1);
        if(s[1]=='B'){
            x=read();y=read();
            Merge(Find(x),Find(y));
        }
        else{
            x=read();y=read();
            fx=Find(x);
            if(root[fx]->siz<y) printf("-1\n");
            else printf("%d\n",pre[K_th(y,root[fx])]);
        }
    }
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值