深入拆解YOLO_V3

这里拆解的代码主要来自GitHub eriklindernoren/PyTorch-YOLOv3

ultralytics版也很流行,但eriklindernoren版更适合初学者。

1.模型可视化

1.1 yolov3各layer可视化

模型通过netron可视化,并稍作整理后显示如下。

别看很复杂,其实主体部分是backbone darknet_53;

darknet可以理解为一堆res_layer,再加上若干下采样块;

其余部分就是直接为yolo_layer服务的,第一个yolo_layer的输入直接为下采样32倍后的feature map,后两个yolo_layer是上采样2倍的结果与前面相同尺寸特征的融合;这有没有点unet的意思?

在这里插入图片描述
其中ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

外卖猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值