论文《Privacy-Preserving Federated Deep Learning with Irregular Users》实验部分

5.1 Functionality

5.2 Accuracy

5.2.1 Effect of iteration times with different proportions of irregular data

我们首先讨论了加密方法中迭代次数的影响。如第3.3节和第4.3节所述,我们知道在PPFDLbscand PPFDLimd的初始化过程中,xm的值∗在第一次迭代中使用的每个梯度m都需要初始化。Works[25]给出了每个梯度xm∗可以初始化为第m个梯度上所有用户总和的平均值。然而,由于每个用户持有的数据质量不同,这种方法存在错误。幸运的是,工作[25]表明,两台服务器之间的多次迭代可以降低错误率。

另一方面,系统中不规则数据的比例也会影响模型的准确性。直观地说,系统中拥有高质量数据的用户越多,模型的准确性就越好。

为了观察PPFDL在这些变量下的准确性,我们进行了实验来记录数据。

图7显示了不同迭代次数下的精度比较,其中OFL[28]是在明文环境中执行学习的原始模型。(OFL和PPFDL的比较)

(结果)我们可以观察到,只要迭代次数超过某个阈值(如3),PPFDL的精度就明显高于OFL。此外,当P的比例达到25%时,OFL的准确度下降很快(都到70以下了),而PPFDL的准确度变化很小。

(原因)这主要是由于我们的MethIU的优越性,它通过将高可靠性分配给持有高质量数据的用户,保证了高质量用户贡献的聚合结果。

5.2.2 不同比例的不规则数据对N的影响

接下来,我们分析参与培训的用户数量N的影响。

如前所述,Zhao等人[14]提出了SecProbe,这是第一个与不规则参与者合作的隐私保护合作深度学习,它利用基于隐私的差异技术来干扰目标DNN的目标函数,并声称SecProbe可以确保准确性和安全性之间的良好平衡。

因此,为了使实验结果更具说服力,我们还进行了与SecProbe的精度比较实验。

(实验设置)

实现SecProbe的实验配置如下࿱

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值