GPU型号简介

一张P40,一张M40,都是24G显存版本,均为主动散热改装版,测试下训练速度。

训练StyleGan类对抗生成模型,占用显存15G。核心100%满载。
没有使用混合精度加速技巧。

平均下来,每训练1000次
RTX 3090,耗时约 107 秒;Tesla P40,耗时约 245 秒,Tesla M40,耗时约 346 秒

时间比为:RTX 3090 为 1X,Tesla P40 为 2.3X,Tesla M40 为 3.2X

与它们的价格比较:M40性价比很高。不过耗电嘛,见仁见智了。
参考https://blog.csdn.net/ONE_SIX_MIX/article/details/123717699

以下参考:AutoDL帮助文档

GPU型号简介

型号显存单精(FP32)半精(FP16)详细参数说明
Tesla P4024GB11.76 T11.76 T查看比较老的Pascal架构GPU,对于cuda11.x之前且对大显存有需求的算法是非常不错的选择
TITAN Xp12GB12.15 T12.15 T查看比较老的Pascal架构GPU,用作入门比较合适
1080 Ti11GB11.34 T11.34 T查看和TITANXp同时代的卡,同样适合入门,但是11GB的显存偶尔会比较尴尬
2080Ti11GB13.45 T53.8 T查看图灵架构GPU,性能还不错,老一代型号中比较适合做混合精度计算的GPU。性价比高
V10016/32GB15.7 T125 T查看老一代专业计算卡皇,半精性能高适合做混合精度计算
306012GB12.74 T约24T查看如果1080Ti的显存正好尴尬了,3060是不错的选择,适合新手。需要使用cuda11.x
A400016GB19.17 T约76T查看显存和算力都比较均衡,适合进阶过程使用。需要使用cuda11.x
3080Ti12GB34.10 T约70T查看性能钢炮,如果对显存要求不高则是非常合适的选择。需要使用cuda11.x
A500024GB27.77T约117T查看性能钢炮,如果觉得3080Ti的显存不够用A5000是合适的选择,并且半精算力高适合混合精度。需要使用cuda11.x
309024GB35.58 T约71T查看可以看做3080Ti的扩显存版。性能和显存大小都非常够用,适用性非常强,性价比首选。需要使用cuda11.x
A4048GB37.42 T149.7 T查看可以看做是3090的扩显存版。算力和3090基本持平,因此根据显存大小进行选择。需要使用cuda11.x
A100 SXM440/80GB19.5 T312 T查看新一代专业计算卡皇,除了贵没缺点。显存大,非常适合做半精计算,因为有NVLink加持,多卡并行加速比非常高。需要使用cuda11.x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MC数据局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值