自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 WESPE:Weakly Supervised Photo Enhancer for Digital Cameras论文

1.摘要:提出了一个能够自动将低质量的图像(移动设备)转换到高质量图像(DSLR单反设备)的深度学习方法——WESPE。这是一个弱监督的方法,不需要像之前强监督的转换方法,不需要将低质量和高质量的每一个图像进行配对。只需要提供一个低质量的数据集(来源手机),一个高质量的数据集(网络爬取),他们之间的视觉内容可以是无关的。此外,训练了基于CNN的一个评估方法来模拟在Flickr数据集上人的打分,然后使用这个网络来获得原图和增强图的参考分数。在一些开源数据集上做了实验:DPED,KITTI,citysc

2021-11-26 09:39:48 1118

原创 anchor-free方法总结

cornernet,centernet,onenet,fcos这几篇论文的引用关系(提出先后顺序):将按照上面的顺序,从背景、标签分配等方面说明区别于联系。一、背景:Cornernet:认为使用anchor需要很多的超参数和手动设计选择,网络复杂。而且需要大数量的anchor来确保覆盖gtbox,导致正负样本不平衡,降低训练速度,于是提出不用anchor,将检测目标当做一对关键点(box的左上,右下)来检测。Centernet:关于anchor的背景和cornernet类似,也是将对anchor

2021-10-18 16:34:15 1324

原创 ghost论文笔记

在此之前成功的CNN模型有个重要的特点就是他们的特征图冗余。本文目的是用ghost module通过很少的计算生成更多的feature map。在和mobilenet v3相似的计算量下, 取得了更好的表现(75% top1accuracy)介绍:例如从下图中可以看出resnet50生成的特征图从图中可以看出有很多相似的。这就是特征图的冗余,上图中的工具就是ghost,以很少的计算获得新的特征图。实验结果表明,提出的ghost模块能够减少计算成本,同时保证相似的识别能力。本文提出了ghost mod

2021-10-16 15:47:45 739

原创 FCOS: Fully Convolutional One-Stage Object Detection论文笔记

介绍:anchor based检测器有一些缺点:1.有很多超参数,例如size,长宽比,anchor的数量,这些超参数都需要仔细设计与调整。2.因为设计后尺度,长宽比都是固定的,不能很好地应对大范围的变化,尤其是小目标,当遇到一个新的检测任务的时候需要重新设计这些参数。3.为了覆盖所有gtbox,anchor based提出了很多的anchor,绝大部分anchor 都是负的,这导致了样本不平衡。4.anchor based还需要计算iou,来分配正负样本的标签。这个新的检测框架有如下优点:1

2021-10-16 15:36:35 736

原创 CornerNet: Detecting Objects as Paired Keypoints

摘要:cornernet是一种anchor free的方法。提出了cornernet,通过检测成对的关键点(box的左上,右下),去掉了anchor,此外还介绍了corner pooling(一个新的pooling layer ),帮助网络更好的定位corner角点。introduction:使用anchor有两个缺点:1.DSSD使用了40k个anchor,retinanet有超过100k个anchor,需要大数量的anchor来确保与大多数gtbox有足够的重叠。结果,只有极小的一部分ancho

2021-10-16 15:20:47 575

原创 Centernet:object as point论文笔记

1.摘要:检测将对象识别为轴向boxes,大部分目标检测枚举了详尽的潜在目标位置和对每个潜在对象分类,这是浪费的,低效的,需要很多后处理。本文将目标建模为一个点——bbox的中心。本文检测器用关键点评估来找到中心点和其他目标属性的回归。本文的方法叫CenterNet,是一个端到端的,更简单,更快,更精确的检测器。2.介绍:one-stage detector为可能的bboxes滑动一个复杂的安排,叫做anchor,然后直接对他们分类,不经过具体的box内容。two-stage的。。。。,尽管如此,这些

2021-10-12 16:30:16 387

原创 Focal Loss论文笔记

摘要:发现在训练密集的检测器的时候,遇到极端的前景背景不平衡。提出解决类别不平衡通过重塑标准的cross entropy loss,降低分配给分类很好的样本的loss。为了评估loss的有效性,我们设计和训练了一个简单的密集检测器:RetinaNet。1.introduction提出一个问题:简单的one-stage检测器能够取得two-stage的相似的精度吗?为了达到这个结果,证明了训练时的类别不平衡是阻碍one-stage取得高精度的主要障碍。提出了一个新的loss函数来消除这个障碍。在rcn

2021-10-10 10:57:18 714

原创 YOLOv4论文笔记

1.introduction:关注于建立一个能够实时操作和在传统gpu上的cnn,只需要一块gpu。贡献主要包括:1设计了一个目标检测detector,使能够在1080ti训练非常快和精确的目标检测器。2验证了在检测器训练阶段无痛涨点和特殊涨点的方法3修改了这些方法,使他们更有效和适合单gpu训练。2.related work2.1目标检测方法检测器主要包括两部分:backbone(vgg,resnet,densenet),head部分分为两类:one-stage,two-stage,最

2021-10-08 19:24:15 252

原创 YOLO9000论文笔记

YOLO9000论文笔记1. Introduction大部分检测方法被小数量的目标数据集限制,和其他分类和标记任务的数据集相比,目前目标检测的数据集是有限的。本文提出了一种利用分类数据集的方法来扩大当前检测系统的范围。利用目标分类的分层视角使能够把明显不同的数据集联合在一起。提出了一种联合的训练算法,使在检测数据集和分类数据集上都能训练目标检测器。(数据集联合方法和联合的训练算法),使能够实时检测超过9000类。2.better我们关注于改善recall和定位,同时保持分类精度,通常好的表现依赖于

2021-10-06 15:38:42 248

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除