jzxx1141 喝醉的狱卒

jzxx1141  喝醉的狱卒

时空限制    1000ms/16MB

题目描述

在一所监狱里有一条长长的走廊,沿着走廊排列着n个牢房,编号为1到n。每个牢房有一个囚犯,而且牢房的门都是锁着的。 一天晚上,狱卒很无聊,于是他就玩起了一个人的游戏。第一轮,他喝了一口威士忌,然后沿着走廊,将所有牢房的门打开。第二轮,他又喝了一口威士忌,然后又沿着走廊,将所有编号为2的倍数的牢房锁上。第三轮,他再喝一口威士忌,再沿着走廊,视察所有编号为3的倍数的牢房,如果牢房是锁着的,他就把它打开;如果牢房是开着的,他就把它锁上。他如此玩了n轮后,喝下最后一口威士忌,醉倒了。 当他醉倒后,一些犯人发现他们的牢房开着而且狱卒已经无能为力,他们立刻逃跑了。 给出牢房的数目n,请你确认最多有可能有多少犯人逃出了监狱?

输入

仅一行,为一个正整数n,n<=10000。

输出

仅一行,一个整数,为最多逃跑的犯人数

样例输入

5

样例输出

2


代码

法一:普通解法
#include<iostream>
using namespace std;
bool a[10001]={0};

int main(){
	int n,ans=0;
	cin>>n;
	for (int i=1; i<=n; i++)
		for (int j=i; j<=n; j+=i) a[j]=!a[j];
	for (int i=1; i<=n; i++)
		if (a[i]) ans++;
	cout<<ans<<endl;
	return 0;
}

法二:实质求√n的大小,或者说是1~n中有多少个数的因子为奇数。

分析:逃跑的犯人最多,就是最后牢房门打开的个数。

狱卒从1开始,把能被1整除的牢房门打开(也可以看做相反处理);

狱卒从2开始,把能被2整除的牢房门做相反处理;

......

狱卒从i开始,把能被i整除的牢房门做相反处理;

那么牢房门为x的牢房,做相反处理了多少次?就是x的因子个数

如果因子个数为偶数,最后肯定还是关着的,奇数,就是开着的。

一个数x的因子个数为奇数,就是这个数是某个数的完全平方数。[1,√x,x]  在[1,√x]有因子,另外的因子一定在[√x,x]之间,特殊情况,就是两个因子都是√x,这智能算一个,这个x编号就是打开的。

#include<iostream>
#include<cmath>
using namespace std;

int main(){
    int n;
    cin>>n;
    cout<<int(sqrt(n))<<endl;
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载,不得用于商业用途。 https://blog.csdn.net/WDAJSNHC/article/details/79369990
个人分类: 数组
上一篇luogu1003 铺地毯(NOIP2011提高组第1题)
下一篇jzxx1131 聪明的小地鼠(筛选法求素数)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭