luogu1449 后缀表达式

luogu1449  后缀表达式

时空限制    1000ms/128MB

题目描述

所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右新进行(不用考虑运算符的优先级)。

如:3*(5–2)+7对应的后缀表达式为:3.5.2.-*7.+@。’@’为表达式的结束符号。‘.’为操作数的结束符号。

输入输出格式

输入格式:

输入:后缀表达式

输出格式:

输出:表达式的值

输入输出样例

输入样例#1:
3.5.2.-*7.+@
输出样例#1:
16

说明

字符串长度,1000内。


分析

表达式

中缀表达式(常用表达式)、前缀表达式(波兰式)、后缀表达式(逆波兰式)
中缀表达式:操作符是以中缀形式处于操作数的中间,中缀表达式是人们常用的算术表示方法。
前缀表达式:也叫波兰式,不包含括号,运算符放在两个运算对象的前面。
后缀表达式:也叫逆波兰式,不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行。
比如:a+b
中缀:a+b      前缀:+ab     后缀:ab+
再比如:(a+b)*(c-d)
中缀:(a+b)*(c-b)     前缀:*+ab-cd     后缀:ab+cb-*

中缀转前缀/后缀  手工算法

1、给每个表达式加上括号
2、将移动每个二元运算符,将其放在与其相应括号的左/右括号处 
3、删除所有括号
如: 中缀表达式为:a/b-c+d*e-a*c
执行第一步:((((a/b)-c)+(d*e))-(a*c))
执行第二步:
        前缀:(-(+(-(/ab)c)(*de))(*ac))        //左括号处
        后缀:((((ab/)c-)(de*)+)(ac*)-)        //右括号处
执行第三步:
        前缀:-+-/abc*de*ac
        后缀:ab/c-de*+ac*

中缀转前缀 计算机算法

1、初始化两个栈:运算符栈s1,储存中间结果的栈s2
2、从右至左扫描中缀表达式
3、遇到操作数时,将其压入s2
4、遇到运算符时,比较其与s1栈顶运算符的优先级
        1若优先级比栈顶运算符的较高或相等,或s1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈
        2否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较
5遇到括号时
        如果是右括号“)”,则直接压入s1
        如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃
6、重复步骤2至5,直到表达式的最左边
7、 将s1中剩余的运算符依次弹出并压入s2
8、依次弹出s2中的元素并输出,结果即为中缀表达式对应的前缀表达式

中缀转后缀 计算机算法

1、初始化一个栈:运算符栈s;
2、从左至右扫描中缀表达式;
3、遇到操作数时,输出;
4、遇到运算符时,比较其与s栈顶运算符的优先级:
        1若优先级比s栈顶运算符的高,或者s为空,或者左括号“(”,则直接将此运算符入栈;
        2否则,将s栈顶的运算符输出,再次转到(4-1)与s中新的栈顶运算符相比较;
5、遇到括号时:
        如果是左括号“(”,则直接压入s;
        如果是右括号“)”,则依次弹出s栈顶的运算符,输出,直到遇到左括号为止,此时将这一对括号丢弃;
6、重复步骤2至5,直到表达式的最右边;
7、将s中剩余的运算符依次弹出并输出;
以上输出即为后缀表达式。

前缀表达式求值

从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 运算符 次顶元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果

后缀表达式求值

从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 运算符 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。


代码

#include<iostream>
#include<string>
#include<stack>
using namespace std;
stack<int> snum;

void calculate(char ch){    //从栈中取出2个数字,进行运算,结果入栈
    int x=snum.top(); snum.pop();    //取栈顶
    int y=snum.top(); snum.pop();    //取新栈顶
    switch (ch){
        case '+': y+=x; break;
        case '-': y-=x; break;
        case '*': y*=x; break;
        case '/': y/=x; break;
    }
    snum.push(y);    //计算结果入栈
}

int main(){
    string s;
    cin>>s;
    for (int i=0,len=s.size()-1; i<len; ){    //字符串逐个扫描
        if (isdigit(s[i])){        //数字,计算值,并入栈
            int x=0;
            while (isdigit(s[i])) x=10*x+s[i++]-'0';
            snum.push(x);
        }
        else calculate(s[i]);    //运算符,计算
        i++;    //指向字符串的下一字符
    }
    cout<<snum.top()<<endl;
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载,不得用于商业用途。 https://blog.csdn.net/WDAJSNHC/article/details/79973225
个人分类:
上一篇codeup26854 中缀表达式的值
下一篇openjudge1696 前缀表达式求值
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭