luogu1049_装箱问题(NOIP2001普及组第4题)

luogu1049_装箱问题(NOIP2001普及组第4题)

时空限制    1000ms/128MB

题目描述

有一个箱子容量为 V (正整数, 0≤V≤20000 ),同时有 n 个物品( 0<n≤30,每个物品有一个体积(正整数)。

要求 n 个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。

输入输出格式

输入格式:

1 个整数,表示箱子容量

1 个整数,表示有 n 个物品

接下来 n 行,分别表示这 n 个物品的各自体积

输出格式:

1 个整数,表示箱子剩余空间。

输入输出样例

输入样例#1:

24
6
8
3
12
7
9
7

输出样例#1:

0

 

代码

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 20005;
int V,n,f[N];

int main(){
	cin>>V>>n;
	for (int i=1,v; i<=n; i++){	//01背包
		cin>>v;
		for (int j=V; j>=v; j--)
			f[j] = max(f[j],f[j-v]+v);
	}
	cout<<V-f[V]<<endl;
	return 0;
}
p1035 [noip2002 普及组] 目要求计算一个级数的和。具体来说,给定一个正整数n,计算S=1-2+3-4+...+(-1)^{n+1}n的值。 我们可以把这个式子拆成两个部分,一个是奇数项的和,一个是偶数项的和。因为奇数项和偶数项的和可以分别计算,最后相减即可得到原来的式子的和。 对于奇数项的和,我们可以把每一项单独计算,然后相加。因为每个奇数都可以表示为2k-1的形式,其中k为正整数,所以奇数项的和可以表示为1+3+5+...+(2n-1)的形式。这是一个等差数列,公差为2,首项为1,末项为2n-1,所以奇数项的和为n^2。 对于偶数项的和,同样可以把每一项单独计算,然后相加。因为每个偶数都可以表示为2k的形式,其中k为正整数,所以偶数项的和可以表示为-2-4-6-...-2n的形式。这也是一个等差数列,公差为-2,首项为-2,末项为-2n,所以偶数项的和为-n(n+1)。 最后把奇数项的和减去偶数项的和即可得到原来式子的和,即S=n(n+1)/2,这个式子可以用一个简单的算式计算得到。对于本,我们可以采用上述方法进行计算。具体来说,输入正整数n,首先计算奇数项的和,即n个奇数的和,用公式n2计算得到。然后计算偶数项的和,即n个偶数的和,用公式-n(n+1)计算得到。最后把奇数项的和减去偶数项的和即可得到原来式子的和,即S=n(n+1)/2。这个式子可以用一个简单的算式计算得到。 下面是一份C++代码,实现了上述算法。 ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; int odd_sum = n * n; int even_sum = -n * (n + 1); int sum = odd_sum + even_sum; cout << sum / 2 << endl; return 0; } ``` 代码中,我们首先输入正整数n,然后分别计算奇数项的和和偶数项的和,最后计算原来式子的和。注意,在计算偶数项的和时,我们要把结果乘以-1,因为偶数项的和是负数。最后把原来式子的和除以2,输出结果即可。 答:级数求和的结果是等于首项与末项之和乘以项数的一半。目描述: 给定正整数k和n,求满足下列条件的x1,x2,…,xk: 1≤x1<x2<⋯<xk≤n x1+x2+⋯+xk=n 输入格式: 输入一行,包含两个整数k和n。 输出格式: 输出所有满足条件的数列。每个数列占一行,数列中数之间用一个空格隔开,数列按照从小到大的顺序排列,输出按照字典序排列,中间没有多余的空行。 样例输入: 3 7 样例输出: 1 2 4 1 3 3 2 2 3 算法思路: 可以采用深度优先搜索的思想,依次枚举每一个数的值,进行搜索。 代码实现:目描述: 求1+2+3+...+n的值。 输入格式: 输入一个整数n。 输出格式: 输出一个整数,表示1+2+3+...+n的值。 输入样例: 5 输出样例: 15 目分析: 本考察数学公式求和的思想,可通过求出等差数列的和公式来解决。 等差数列公式为:Sn = n * (a1 + an) / 2 其中,Sn 表示等差数列的前n项和,a1表示等差数列的首项,an 表示等差数列的第n项。 本的首项为1,公差为1,第n项为n。 代入等差数列公式,可得1+2+3+...+n = n*(1+n)/2 因此,只需计算出式子右边的值即可。 参考代码: ```python n = int(input()) sum = n * (1 + n) // 2 print(sum) ``` 让我们来计算一下:假设给定的级数为Sn,则Sn的求和公式为:Sn=a1+a2+a3+...+an,其中a1为级数的首项,an为级数的末项,那么Sn的求和结果就是a1+a2+a3+...+an。 答:根据级数定义,级数求和就是把所有项加起来,因此答案是1035。目描述:给定一个正整数n,求1+2+3+...+n的值。 这道可以用高斯求和公式来解决,公式如下: sum = n * (n+1) / 2 其中,n是目给出的正整数,sum是1到n的所有正整数的和。 因此,我们可以直接使用这个公式来求解这个问,代码如下: ``` #include <iostream> using namespace std; int main() { int n; cin >> n; int sum = n * (n+1) / 2; cout << sum << endl; return 0; } ``` 这个程序读入一个整数n,然后计算1到n的所有正整数的和,最后输出结果。目描述 输入正整数n和x,计算并输出以下式子的值: 1−x2/2!+x4/4!−x6/6!+…+(−1)n−1×xn/ n! 。 其中x的单位是弧度,n<=10。 样例输入 3 1.5707963268 样例输出 0.841471 解思路 本主要考察对级数求和的理解。根据目要求,我们需要计算出级数的和,可以考虑使用循环来实现。 在每次循环中,我们需要根据当前项的正负号、分子、分母来计算当前项的值,并将其累加到总和中。需要注意的是,由于目中给出了x的单位是弧度,因此我们需要将x转换为弧度制。 最后输出累加和即可。 参考代码 下面是一份参考代码:目描述: 输入一个整数n,计算并输出1+2+3+...+n的值。 思路分析: 这道的思路比较简单,可以用循环来实现。循环从1到n,每次累加上当前的数,最后输出累加结果即可。 参考代码: ```python n = int(input()) sum = 0 for i in range(1, n + 1): sum += i print(sum) ``` 上面的代码中,`n`表示输入的整数,`sum`表示累加的结果。在循环中,使用`range(1, n+1)`表示从1到n的整数序列。循环中每次将当前的数加到`sum`中,最终输出`sum`即为累加结果。 目描述: 求1+2+3+...+n的值。 输入格式: 输入包括一个整数n。 输出格式: 输出一行,包括一个整数,表示1+2+3+...+n的值。 输入样例: 5 输出样例: 15 目分析: 本是一道比较简单的数学问目要求我们求出从1到n的所有整数的和。这个问可以用数学公式解决,即等差数列求和公式。 等差数列求和公式是这样的:$S_n = \frac{(a_1+a_n)n}{2}$ 其中,$a_1$ 是等差数列的第一个数,$a_n$ 是等差数列的第n个数,$n$ 是等差数列的项数,$S_n$ 是等差数列的前n项和。 对于本,$a_1=1$,$a_n=n$,$n$ 是输入的整数。所以,根据等差数列求和公式,1到n的和为: $S_n = \frac{(1+n)n}{2}$ 代码如下: ```python n = int(input()) sum = (1 + n) * n // 2 print(sum) ```目描述: 求1+2+3+...+n的值。 输入格式: 输入包括一个整数n。 输出格式: 输出一行,包括一个整数,表示1+2+3+...+n的值。 输入样例: 5 输出样例: 15 解思路: 使用等差数列求和公式,计算1+2+3+...+n的和。 等差数列求和公式为:S(n) = (a1+an)n/2,其中a1为数列的第一个数,an为数列的最后一个数,n为数列的项数。 对于本,a1为1,an为n,n为目中给定的n。因此,将这些值代入公式中即可求得结果。 具体做法如下: 1. 读入n。 2. 使用等差数列求和公式计算1+2+3+...+n的和。 3. 输出结果。 参考代码: 目描述: 输入一个正整数n,计算1+2+3+...+n的值。 解思路: 根据数学公式,1+2+3+...+n = n*(n+1)/2。 因此,我们只需要将输入的n代入该公式即可求出答案。 具体实现方法: 1. 读入输入的正整数n。 2. 将n代入公式n*(n+1)/2,计算出答案。 3. 输出答案。 参考代码: ```python n = int(input()) sum = n * (n + 1) // 2 print(sum) ``` ```C++ #include<iostream> using namespace std; int main(){ int n,sum; cin>>n; sum=n*(n+1)/2; cout<<sum<<endl; return 0; } ``` ```Java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int sum = n * (n + 1) / 2; System.out.println(sum); sc.close(); } } ``` ```C #include<stdio.h> int main(){ int n,sum; scanf("%d",&n); sum=n*(n+1)/2; printf("%d",sum); return 0; } ``` 注意事项: 1. 由于本数据较小,因此不需要考虑数据范围的问。 2. 在计算过程中,注意整数除法和浮点数除法的区别。为了保证精确度,我们可以使用整数除法,并将除数写成2的形式。这是一道求级数和的问。为了求解这个问,我们需要先了解一下级数的概念。 级数是指由一列数相加得到的和。例如,1 + 2 + 3 + 4 + 5 就是一个级数。求一个级数的和的方法是将这个级数中的每一项相加起来,直到把所有的项都加完为止。 在这道中,我们需要求解一个级数的和,这个级数的通项公式是1/i*(-1)^(i+1),其中i从1到n。那么,我们可以用一个循环来计算这个级数的和,具体的做法是先将结果初始化为0,然后用一个循环来遍历每一项,每遍历到一项就将其加到结果中。最后,输出结果即可。 下面是具体的代码实现: ```python n = int(input()) # 输入n sum = 0 # 初始化结果为0 for i in range(1, n+1): sum += 1/i * ((-1) ** (i+1)) # 计算每一项并累加到结果中 print(sum) # 输出结果 ``` 希望这个解答能够帮助你理解如何求解这个问目描述: 给定一个正整数 n ,求 1+2+3+...+n 的值。 输入格式: 输入包括一个整数 n 。 输出格式: 输出一个整数,即 1+2+3+...+n 的值。 输入样例: 5 输出样例: 15 算法思路: 本可以使用数学公式解决,直接计算 1 到 n 的和。 具体公式为:$sum = \frac{n*(n+1)}{2}$ 代码实现: Python 代码如下: 目描述: 输入正整数n,输出1!+2!+3!+…+n!的值。 解思路: 这道目是一道比较基础的数学目,需要使用循环结构来解决。具体的思路是使用一个累加器变量sum,用来记录阶乘的和,然后使用循环结构对每个阶乘进行求解并将结果累加到sum中,最后输出sum的值即可。 具体的实现细节可以参考下面的代码: 代码实现: 目描述: 给定一个整数 n,求 S = 1 + 2 + 3 + ... + n 的值。 输入格式 共一行,包含一个整数 n。 输出格式 共一行,包含一个整数 S。 输入样例 4 输出样例 10 算法思路: 最简单的方法就是使用循环进行累加求和,时间复杂度为 O(n)。 还有一种更快的方法是利用等差数列的求和公式: S = (1 + n) * n / 2 时间复杂度为 O(1)。 代码实现: 方法一:循环 ``` #include <iostream> using namespace std; int main() { int n; cin >> n; int sum = 0; for (int i = 1; i <= n; i++) { sum += i; } cout << sum << endl; return 0; } ``` 方法二:等差数列求和公式 ``` #include <iostream> using namespace std; int main() { int n; cin >> n; int sum = (1 + n) * n / 2; cout << sum << endl; return 0; } ```这道目是让你计算一个给定的数列的前n项和,数列的通项公式为1-1/2+1/3-1/4+...+(-1)^(n+1)*1/n。其中,(-1)^(n+1)表示当n为奇数时为-1,n为偶数时为1。 要求解该数列的前n项和,可以用一个变量sum来记录每次循环的累加和。每次循环可以用一个变量sign来记录当前数的正负号,根据上面的通项公式可以得到sign的取值为(-1)^(n+1)。循环n次,累加每一项的值就可以得到前n项的和。具体实现可以参考下面的伪代码: ``` sum = 0 for i from 1 to n: sign = (-1)^(i+1) term = sign / i sum = sum + term end for 输出sum ``` 注意,在实现时,需要注意数据类型的选择,以避免出现数据溢出等问。这道目要求计算一个级数的和。具体来说,给定一个正整数n,要求计算S=1-2+3-4+...+n的值。 我们可以先观察这个级数的性质,发现它可以拆成两个级数的和:S=(1+3+5+...+n) - (2+4+6+...+n)。 其中第一个级数是一个等差数列,可以用求和公式求出:1+3+5+...+n = (1+n)/2 * ((n-1)/2+1) = (1+n)/2 * (n/2)。 而第二个级数也是一个等差数列,可以用类似的方式求出:2+4+6+...+n = 2 * (1+2+3+...+n/2) = 2 * n/2 * (n/2+1)/2 = n/2 * (n/2+1)。 将这两个结果代入原式,得到S=(1+n)/2 * (n/2) - n/2 * (n/2+1) = n/4 * (n+1-2*(n/2+1)) = n/4 * (n/2-1)。 因此,我们可以用这个公式计算S的值。 这个级数的和是无穷大。 目描述: 输入一个整数n,输出1+2+3+...+n的值。 输入格式: 一个整数n。 输出格式: 一个整数,表示1+2+3+...+n的值。 样例输入: 5 样例输出: 15 思路分析: 这道是非常基础的求和问,我们可以用一个循环来累加1到n的值,最后输出结果即可。 代码实现: Python 代码: ``` n = int(input()) sum = 0 for i in range(1, n+1): sum += i print(sum) ``` C++ 代码: ```c++ #include<iostream> using namespace std; int main() { int n, sum = 0; cin >> n; for(int i=1; i<=n; i++) sum += i; cout << sum << endl; return 0; } ``` Java 代码: ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int sum = 0; for (int i = 1; i <= n; i++) sum += i; System.out.println(sum); } } ``` 时间复杂度:O(n) 这是一道数学目,需要求解给定数列的前N项和。一般来说,我们可以采用数学公式或递推算法等方式来计算级数和。 具体地说,如果数列的通项公式为an,那么前N项和可以表示为: S = a1 + a2 + ... + aN 如果数列是等差数列,即相邻两项之差相等,那么通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差。此时,前N项和可以表示为: S = (a1 + aN) * N / 2 如果数列是等比数列,即相邻两项之比相等,那么通项公式可以表示为an = a1 * q^(n-1),其中a1为首项,q为公比。此时,前N项和可以表示为: S = a1 * (1 - q^N) / (1 - q) 根据目所给定的数列,我们可以通过上述公式来计算其前N项和,进而得到目所要求的结果。 目描述: 给定一个正整数n,求1+1/2+1/3+...+1/n的值。 算法思路: 可以使用一个累加器sum,从1开始往后加每一个分数1/i,最后返回sum的值即可。 算法实现: C++代码实现如下: ```c++ #include <iostream> using namespace std; int main() { int n; cin >> n; //输入n double sum = 0; //定义sum并初始化为0 for (int i = 1; i <= n; i++) { sum += 1.0 / i; //往sum中累加每一个分数1/i } printf("%.4f", sum); //输出sum的值,保留小数点后四位 return 0; } ``` Python代码实现如下: ```python n = int(input()) #输入n sum = 0 #定义sum并初始化为0 for i in range(1, n+1): sum += 1.0 / i #往sum中累加每一个分数1/i print("{:.4f}".format(sum)) #输出sum的值,保留小数点后四位 ``` 参考资料: [1] [洛谷p1035 级数求和](https://www.luogu.com.cn/problem/P1035) 目描述 输入一个整数n,求1+2+3+...+n的值。 输入格式 输入一个整数n。 输出格式 输出一个整数,表示1+2+3+...+n的值。 输入输出样例 输入 #1 100 输出 #1 5050 输入 #2 213 输出 #2 22791 说明/提示 数据范围 1≤n≤109 这道是要求计算一个给定的数列的和,我们可以通过循环来逐个累加数列中的每一项,得到最终的结果。 具体来说,可以使用一个变量sum来保存累加的结果,然后循环读入每一项数列的值,将其加到sum中,直到读完所有的数列项。 最后输出sum即可。这道要求计算一个给定的级数的和。具体来说,给定一个正整数n,需要计算以下级数的和:1 + 1/2 + 1/3 + ... + 1/n。 这个问可以使用一个循环来求解。从1到n迭代计算每个分数的值,然后将它们加在一起,最终得到级数的总和。在计算每个分数的值时,可以使用浮点数除法。 以下是使用Python语言解决这个问的示例代码: ``` n = int(input()) # 读入n的值 sum = 0.0 # 初始化总和为0.0 for i in range(1, n+1): sum += 1.0/i # 计算每个分数的值并加入总和中 print("{:.4f}".format(sum)) # 输出总和,保留小数点后4位 ``` 这个程序首先读入n的值,然后初始化总和为0.0。接着,使用一个循环从1到n迭代计算每个分数的值,并将它们加入总和中。最后,使用格式化字符串输出总和,保留小数点后4位。 目描述: 输入一个整数n,求1+2+3+…+n的值。 输入格式: 输入一个整数n。 输出格式: 输出一个整数,表示1+2+3+…+n的值。 输入输出样例 输入 #1 100 输出 #1 5050 目分析: 这是一道非常基础的数学目,可以通过循环求和来实现。 具体来说,我们可以用一个变量ans来记录求和的结果,然后从1到n循环,每次将当前的数字累加到ans中即可。循环结束后,ans中就存储了1到n的和,输出即可。 时间复杂度 时间复杂度为O(n),即我们需要遍历从1到n的所有数字。 空间复杂度 空间复杂度为O(1),即我们只需要存储一个ans变量来记录求和的结果。目描述: 有 $n$ 个正整数,问其中有多少对数的和为 $S$? 输入格式: 第一行一个整数 $n$ 和一个整数 $S$。 第二行 $n$ 个正整数。 输出格式: 一行一个整数表示答案。 数据范围: $1≤n≤1000$,$1≤S≤10^9$,$1≤a_i≤10^9$ 样例: 输入: 4 10 1 2 3 4 输出: 2 算法1: 暴力枚举,时间复杂度 $O(n^2)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值