luogu2085 最小函数值
时空限制 1000ms/128MB
题目描述
有n个函数,分别为F1,F2,...,Fn。定义Fi(x)=Ai*x^2+Bi*x+Ci (x∈N*)。给定这些Ai、Bi和Ci,请求出所有函数的所有函数值中最小的m个(如有重复的要输出多个)。
输入输出格式
输入格式:
输入数据:第一行输入两个正整数n和m。以下n行每行三个正整数,其中第i行的三个数分别位Ai、Bi和Ci。Ai<=10,Bi<=100,Ci<=10 000。
输出格式:
输出数据:输出将这n个函数所有可以生成的函数值排序后的前m个元素。这m个数应该输出到一行,用空格隔开。
输入输出样例
输入样例#1:
3 10
4 5 3
3 4 5
1 7 1
输出样例#1:
9 12 12 19 25 29 31 44 45 54
说明
数据规模:n,m<=10000
代码
法一:手动堆
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 10005;
int n,m,ans[N];
struct node{
int a,b,c,id,x,val;
}f[N];
int find(int a,int b,int c,int x){
return a*x*x+b*x+c;
}
void adjust(int i,int m){ //向下调整
for (int j=2*i; j<=m; ){
if (j<m && f[j+1].val<f[j].val) j++;//存在右孩子且值更小
if (f[i].val>f[j].val){//a[i]父亲节点 a[j]孩子节点
swap(f[i],f[j]);
i = j;
j = 2*i;
}
else break;
}
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
for (int i=1; i<=n; i++){
cin>>f[i].a>>f[i].b>>f[i].c;
f[i].id=i; f[i].x=1; //编号和x初值1
f[i].val = find(f[i].a,f[i].b,f[i].c,f[i].x);
}
for (int i=n/2; i>=1; i--) adjust(i,n); //构建小顶堆
for (int i=1; i<=m; i++){
ans[i] = f[1].val; //存储最小值
f[1].x++; //最小值x++
f[1].val = find(f[1].a,f[1].b,f[1].c,f[1].x); //计算根节点val值
adjust(1,n); //向下调整
}
for (int i=1; i<=m; i++)
i<m ? cout<<ans[i]<<" " : cout<<ans[i]<<endl;
return 0;
}
法二:枚举
#include<iostream>
using namespace std;
const int N = 10005, oo = 0x3fffffff;
int n,m,a[N],b[N],c[N],f[N],ans[N];
int find(int A,int B,int C,int x){
return A*x*x+B*x+C;
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
for (int i=1; i<=n; i++){
cin>>a[i]>>b[i]>>c[i];
f[i] = 1; //x=1函数值最小
}
for (int i=1; i<=m; i++){
int k,tp=oo;
for (int j=1; j<=n; j++) //枚举每个a,b,c
if (find(a[j],b[j],c[j],f[j])<tp){
ans[i] = tp = find(a[j],b[j],c[j],f[j]); //求出最小值
k = j; //是哪个a,b,c产生的
}
f[k]++; //x++
}
for (int i=1; i<=m; i++)
i<m ? cout<<ans[i]<<" " : cout<<ans[i]<<endl;
return 0;
}