Balance
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 8724 | Accepted: 5299 |
Description
Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance.
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.
Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.
Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.
Input
The input has the following structure:
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm);
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values.
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm);
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values.
Output
The output contains the number M representing the number of possibilities to poise the balance.
Sample Input
2 4 -2 3 3 4 5 8
Sample Output
2
题意:有一个天平,有c个钩码,g个砝码。给出c个钩码相对与0点的位置,和g个砝码的质量。求把所有砝码放上天平,使得天平平衡的方法数。
思路:力矩=力臂*质量。当两边力矩差为0时,则天平平衡。因为题目保证存在平衡的状况,则两边的力矩都不会超过20*15*25/2=3750。
AC代码:
#include <cstring> #include <string> #include <cstdio> #include <algorithm> #include <queue> #include <cmath> #include <vector> #include <cstdlib> #include <iostream> using namespace std; int dp[25][7505]; //dp[i][j]挂i个砝码,力矩差为j的方法数 int w[25],x[25]; int main() { int c,g; scanf("%d%d",&c,&g); for(int i=0;i<c;i++) scanf("%d",&x[i]); for(int i=0;i<g;i++) scanf("%d",&w[i]); memset(dp,0,sizeof(dp)); for(int i=0;i<c;i++) //两边要平衡,那么两边的力矩都不会超过3750,因为存在负值,所以+3750 dp[1][x[i]*w[0]+3750]=1; for(int i=1;i<g;i++) for(int j=0;j<c;j++) for(int k=0;k<=7500;k++) if(dp[i][k]) //表示能达到放入i个砝码,力矩差为k的状态 dp[i+1][k+w[i]*x[j]]+=dp[i][k]; //砝码能放在c个地方,所以要全部加上 cout<<dp[g][3750]<<endl; return 0; }