整数拆分
思路分析:
1.dp[i]的含义是分拆数字i之后,得到的最大乘积为dp[i].
2.确定递推公式
拆分出的数可能为2个,或两个以上。
拆分结果必定是小于这个数本身,最小为1。
j从1开始遍历,拆分出的数字逐渐变大,但要找出所有拆分结果乘积中的最大的那个,一边比较,一边继续遍历和拆分,直到找到所有拆分结果中乘积最大的那个为止,返回最大乘积。
递推公式:dp[i] = max{dp[i], (i-j)*j,dp[i - j] * j};
3.初始化,dp[1]和dp[0]初始化没有意义,初始化dp[2]=1;
4.确定遍历顺序
由于dp[i]依赖于dp[i - j]的状态,所以遍历i是从前往后的,也就是说,先有了dp[i - j]才有了dp[i].
拆分0无意义,应该从1开始。
拆分一个数n使之乘积最大,那么一定是拆成m个近似相同的子数相乘才是最大的,m的大小一定是大于等于2的。(可求证)
由上面可以知道,j遍历到n/2即可,超过n/2就找不到近似相等的子数,一定不是最大值。
class Solution{
public:
int interBreak(int n){
vector<int>dp(n+1);
dp[2]=1;
for(int i = 3; i <= n; i++){
for(int j = 1;j <= n/2 ;j++){
dp[i] = max(dp[i],max((i - j)*j,dp[i - j]*j));
}
}
return dp[n];
}
};
不同的二叉搜索树
思路分析:
找出递推关系:
子树上有2个元素就有2种排序的方式,只是比如1,2.可能是1放在2的左子树,也可能是
2放在1的右子树。
dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
(相乘是因为,左右子树的情况有一个变化,都会使二叉树变化,因此左子树的所有可能情况*右子树的所有可能情况)
有2个元素的搜索树数量就是dp[2]。
有1个元素的搜索树数量就是dp[1]。
有0个元素的搜索树数量就是dp[0]。
将上面三种可能相加就是所有可能的分布。
dp[3] = dp[2]*dp[0]+dp[1]*dp[1]+dp[0]*dp[2]
1.dp[i]的含义是从1到i为节点组成的二叉搜索树的个数为dp[i].
2.递推公式:dp[i]=dp[以j为头节点的左子树节点数量]*dp[以j为头节点的右子树节点数量]
即:dp[i]=dp[j-1]*dp[i - j];
j - 1,i - j表示上述递归过程中左子树的节点数量不断减少,右子树数量不断增加,直到左子树数量变为0,右子树数量达到总结点数 - 1
初始化:dp[0] = 1 空树状态,满足上面递推公式
4.遍历顺序:以i作为头节点,j用来遍历当i为头节点时的状态。
class Solution{
public:
int numTree(int n){
vector<int>dp(n+1);
dp[0] = 1;
for(int i = 1; i <= n; i++){//以i为头节点
for(int j =1; j <= i; j++){
dp[i] += dp[j - 1]*dp[i - j];//左子树节点数为j-1时,右子树节点数为i - j,左右子树可能的情况数目之积即为所有可能的二叉树分布
}
}
return dp[n];
}
};