鸢尾花数据分析项目(附详细代码和结果)

数据集来源:https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris

1. 数据导入

鸢尾花数据可直接从Sklearn中的datasets 导出。sklearn.datasets.load_iris(*, return_X_y=False, as_frame=False)
该Iris中有两个属性,分别是:iris.data和iris.target

  • data里是一个矩阵,每一列代表了萼片或花瓣的长宽,一共4列,每一列代表某个被测量的鸢尾植物,一共采样了150条记录。
  • target 代表花的种类
  • return_X_y 指要不要返回 (data, target)两组值,如果选datasets.load_iris(return_X_y=True)即返回上面两组值,默认是False
  • as_frame 如果用True,则返回DataFrame格式。 注:New in version 0.23. 0.23之前的版本没有这个,用help(sklearn)查看目前版本。
from sklearn import datasets
iris = datasets.load_iris() #鸢尾花数据可直接从Sklearn中的datasets 导出

iris #直接从datasets中读取,返回的是字典格式的数据

print(type(iris['data'])) #data数据类型
print(iris['data'].shape) #data结构
print(iris['target'].shape) #结构
print(iris['target_names']) #iris中的targetname 
print(iris['target']) #iris中的target列


#切分成X和Y
X, y = iris.data, iris.target 

#格式转换,整合成表格 
iris_data = pd.DataFrame(np.hstack((X, y.reshape(-1, 1))),index = range(X.shape[0]),columns=['sepal_length_cm','sepal_width_cm','petal_length_cm','petal_width_cm','class'] )

在这里插入图片描述

2.了解数据

iris_data.info() #查看数据类型`

在这里插入图片描述
再例行先来一个描述性分析:

iris_data.describe() #统计分析

在这里插入图片描述

#可视化分析,查看到不同特征之间的关系以及分布
sns.pairplot(iris_data.dropna(),hue = 'class) 

在这里插入图片描述

  • 热力图: 分析特征之间的相关性
fig=plt.gcf()
fig.set_size_inches(12, 8)
fig=sns.heatmap(iris_data.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', square=True, mask=False, vmin=-1, vmax=1, cbar_kws={"orientation": "vertical"}, cbar=True)

在这里插入图片描述

3.数据集训练集切分

#数据集训练集切分
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=20, shuffle=True)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)#结果可以看到把样本分成了120和30 两个样本

在这里插入图片描述
再画个图看看具体三类花的分布:

参考链接:https://blog.csdn.net/Shine_rise/article/details/102975238

#数据可视化
plt.scatter(X_train[y_train == 0][:, 0], X_train[y_train == 0][:, 1], color='r')
plt.scatter(X_train[y_train == 1][:, 0], X_train[y_train == 1][:, 1], color='g')
plt.scatter(X_train[y_train == 2][:, 0], X_train[y_train == 2][:, 1], color='b')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.show()

在这里插入图片描述

4.建模

# Logistic Regression
model = LogisticRegression()
model.fit(X_train, y_train)
prediction = model.predict(X_test)
print('The accuracy of the Logistic Regression is {0}'.format(metrics.accuracy_score(prediction,y_test)))

# Support Vector Machine
model = svm.SVC()
model.fit(X_train, y_train)
prediction = model.predict(X_test)
print('The accuracy of the SVM is: {0}'.format(metrics.accuracy_score(prediction,y_test)))

# Decision Tree
model=DecisionTreeClassifier()
prediction = model.predict(X_test)
print('The accuracy of the Decision Tree is:{0}'.format(metrics.accuracy_score(prediction,y_test)))

# K-Nearest Neighbours
model=KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
prediction = model.predict(X_test) 
print('The accuracy of the KNN is: {0}'.format(metrics.accuracy_score(prediction,y_test)))

结果SVM最好,其他都一样。
在这里插入图片描述

模型评估可视化

  • 混淆矩阵(这里直接用了上面的X_test, y_test,即KNN的结果)
from sklearn.metrics import plot_confusion_matrix #导包

class_names = iris.target_names #用来命名的

np.set_printoptions(precision=2) #数组格式化打印(指定小数点位数)

# Plot non-normalized confusion matrix
titles_options = [("Confusion matrix, without normalization", None),
                  ("Normalized confusion matrix", 'true')]
for title, normalize in titles_options:
    disp = plot_confusion_matrix(model, X_test, y_test,
                                 display_labels=class_names,
                                 cmap=plt.cm.Blues,
                                 normalize=normalize)
    disp.ax_.set_title(title)

    print(title)
    print(disp.confusion_matrix)

plt.show()

结果输出:
在这里插入图片描述
再画一下SVM,这里直接用了个整合的代码(建模+画图)

# Support Vector Machine
model = svm.SVC()
model.fit(X_train, y_train)
prediction = model.predict(X_test)
print('The accuracy of the SVM is: {0}'.format(metrics.accuracy_score(prediction,y_test)))

from sklearn.metrics import plot_confusion_matrix

class_names = iris.target_names #用来命名的

np.set_printoptions(precision=2) #数组格式化打印(指定小数点位数)

# Plot non-normalized confusion matrix
titles_options = [("Confusion matrix, without normalization", None),
                  ("Normalized confusion matrix", 'true')]
for title, normalize in titles_options:
    disp = plot_confusion_matrix(model, X_test, y_test,
                                 display_labels=class_names,
                                 cmap=plt.cm.Blues,
                                 normalize=normalize)
    disp.ax_.set_title(title)

    print(title)
    print(disp.confusion_matrix)

plt.show()

结果如下图,可见都是整整齐齐地排在对角线上,结论和之前的accuracy_score一样,SVM准确度要比KNN高
在这里插入图片描述

### 回答1: 鸢尾花数据集是一个经典的分类数据集,包含了三种不同种类的鸢尾花(Setosa、Versicolour、Virginica)的萼片和花瓣的长度宽度。 下面是一个使用 Python 的简单示例,它使用了 scikit-learn 库中的鸢尾花数据集,并使用逻辑回归进行判别分析: ``` from sklearn import datasets from sklearn.linear_model import LogisticRegression # 加载鸢尾花数据集 iris = datasets.load_iris() X = iris["data"] y = iris["target"] # 建立逻辑回归模型 clf = LogisticRegression() # 训练模型 clf.fit(X, y) # 预测结果 predictions = clf.predict(X) # 计算准确率 accuracy = clf.score(X, y) print("Accuracy: ", accuracy) ``` 在这个例子中,我们首先导入了 scikit-learn 中的鸢尾花数据集和逻辑回归模型。然后我们将数据加载到变量 `X` 和 `y` 中,其中 `X` 包含萼片和花瓣的长度宽度,而 `y` 包含每朵花的种类。接下来,我们使用逻辑回归模型拟合数据,并使用 `predict` 函数进行预测。最后,我们使用 `score` 函数计算模型的准确率。 希望这个示例能帮助你理解如何使用 Python 进行判别分析。 ### 回答2: 鸢尾花数据集是一个经典的数据集,用于模式识别的测试案例。它包含150个数据样本,每个样本都来自不同种类的鸢尾花,分为三个亚属:Setosa,Versicolor和Virginica,每个亚属包含50个样本。 判别分析是一种统计学习方法,用于将样本划分到不同的不相交的类别中。下面是用Python编写的鸢尾花数据集判别分析的代码示例: ```python import numpy as np from sklearn.datasets import load_iris from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # 加载鸢尾花数据集 iris = load_iris() X = iris.data # 特征 y = iris.target # 标签 # 创建判别分析模型 lda = LinearDiscriminantAnalysis() # 拟合数据集 lda.fit(X, y) # 预测新样本 new_sample = np.array([[5.1, 3.5, 1.4, 0.2]]) prediction = lda.predict(new_sample) # 输出预测结果 print("预测结果:", iris.target_names[prediction[0]]) ``` 以上代码首先导入了numpy、sklearn.datasets和sklearn.discriminant_analysis模块,然后使用load_iris函数加载鸢尾花数据集,将特征存储在X变量中,将标签存储在y变量中。 接下来,使用LinearDiscriminantAnalysis函数创建了一个判别分析模型lda。 然后,调用lda的fit方法来拟合数据集,训练判别分析模型。 最后,我们使用一个新的样本new_sample来进行预测,并使用predict方法得到预测结果。最后,我们输出预测结果。 以上代码实现了对鸢尾花数据集的判别分析,并使用判别分析模型对新样本进行了预测。 ### 回答3: 鸢尾花数据集是经典的机器学习数据集之一,常用于分类问题的实践和算法的比较。 下面是一个用Python实现鸢尾花数据集判别分析的简单示例代码: ```python # 导入必要的库 import pandas as pd from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # 读取鸢尾花数据集,数据集可以在sklearn库中直接加载 from sklearn.datasets import load_iris iris = load_iris() # 将数据集转化为DataFrame格式 iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names) iris_df['target'] = iris.target # 创建判别分析模型,这里使用线性判别分析方法 lda = LinearDiscriminantAnalysis() # 使用前四个特征作为输入数据进行训练 X_train = iris_df.iloc[:, :4] y_train = iris_df['target'] lda.fit(X_train, y_train) # 使用训练好的模型进行预测 predicted_class = lda.predict([[5.1, 3.5, 1.4, 0.2]]) print("预测的类别为:", predicted_class) # 输出判别分析模型的准确率 accuracy = lda.score(X_train, y_train) print("模型的准确率为:", accuracy) ``` 在这段代码中,我们首先导入了需要使用的库,包括pandas用于数据处理和sklearn中的`LinearDiscriminantAnalysis`类,它实现了线性判别分析算法。 然后,我们加载并转换鸢尾花数据集,将其转化为DataFrame格式便于处理。接着,我们创建了判别分析模型的实例,并使用`fit`方法对模型进行训练。 然后,我们使用训练好的模型对给定的样本进行预测,并打印出预测的类别。最后,我们使用`score`方法计算模型在训练集上的准确率,并将其打印出来。 这段代码实现了对鸢尾花数据集进行判别分析,并进行了简单的预测和准确率评估。你可以根据自己的需求和实际情况进行适当的调整和扩展。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值