说在开头:关于自然常数e
我们在之前聊到过,毕达哥拉斯学派的弟子希伯索斯发现了无理数(无限不循环小数,不能用分数表示),并为此付出了生命的代价,同时为我们打开了无理数的大门(史称“第一次数学危机”,直到2000多年后的“戴德金原理”才彻底解决了无理数的这个数学危机)。在众多的无理数中,最为人所熟知的两个无理数常数便是:圆周率π( 3.141592653……)和自然(Nature)常数e( 2.718281828……)。
2200多年前的阿基米德是这么计算圆周率的:已知直径为1的单位圆(周长 = 2*π*r,即圆周率π),如下图所示做内切和外切正多边形,那么圆周长必然介于外切和内切正多边形周长之间。我们可以看到到了正8边形时,内切正8边形和外切正8边形的“空隙”已经比较小,那么正16边型和32边型的精度就能更高了,阿基米德给出了“圆周率”的估计值在223/71 ~ 22/7之间,也即是在3.140845~3.142857之间。

代表“圆周率”的字母π是第十六个希腊字母的小写,也是希腊语 περιφρεια(表示周边、地域或圆周)的首字母。1706年英国数学家威廉·琼斯最先使用“π”来表示圆周率,1736年,瑞士大数学家莱昂纳德.欧拉也开始用π来表示圆周率,从此π便成了圆周率的代名词。
自然常数e从其名字上就能感受到它的神奇,它表示了这个数是“自然存在而非人为创造”。e这个表示自然常数的符号是由莱昂纳德.欧拉(是他,是他,还是他~)命名的,e正是Euler(欧拉)的首字母“e”。但实际上第一个发现这个常数的并非是欧拉本人,而是瑞士数学家雅克比.伯努利(发现了概率论中的大数定律);而雅克比.伯努利的数学家弟弟约翰.伯努利(提出正态分布误差理论)正是欧拉的数学老师(牛人之间是会相互吸引的)。
18世纪初,欧拉试图解决雅各布.伯努利在半个世纪前提出的复利问题:假设在银行存了1 元, 而银行提供的年利率是 100%,那1年后连本带息将得到2块钱。那么现在假设半年就计算一次利息(半年利率为50%,得到利息后马上又存进银行),这种年中计息一次的方案:得到上半年的本息一共1+1*0.5=1.5元, 然后下半年连本带息年末就为(1+1/2)² = 2.25元,即:一年2.25 元钱。那利率周期如果再短一些会怎样呢?我们再来假设每个月结算一次,月利率为1/12,一年本息计算(1+1/12)¹²得到大约 2.61304 块钱,看起来是利息的周期越短, 收益就越高。按照这个趋势,通过1元一年赚1亿元的小目标,那是指日可待啊,不过雅各布.伯努利马上发现随着 n 趋于无穷,对于这样的连续复利存在着一个极限值:

这个极限值欧拉计算出来了小数点后18位:2.71828182845904523。就是说无论计息周期再短,举个栗子,你存1元钱在银行,银行按照年利率100%,1秒钟结算一次利息并将转存,最终一年后得到的钱不会大于自然常数e
。
这么一看,这个自然常数e虽然有点意思但也很普通嘛,估计没多少人梦想着靠1元钱通过复利赚1亿元这个小目标。然而在自然界中,大多数事物都处于一种无意识连续增长状态中,如果单位时间增长率为100%,那么经过一个单位后将变成原来的e倍。大自然中到处都有对数螺线的身影,如下图即是自然常数e下的一种表现形式,鹦鹉螺,热带低气压(台风)、漩涡星系(例如:仙女座星系)都自然符合自然常数e的规律。

数学家们还发现以e为底数的对数计算是最简洁、最美、最自然的形式,理论上计算机采用e进制的效率最高,只是二进制便于实现而已(三进制的效率更高,因为更接近e,后续有机会聊聊三进制计算机)。e在对数、指数中有特殊的规律,是其中最重要的一种形式。

对于exp(x)指数来说有如下的特性(如下图所示,想起《电感器原理》趋肤效应章节,铜缆趋肤深度的计算原理么?):
- exp(x)的导函数就是它自己:exp(x),即:一个函数在任一点的变化率(斜率),恰好等于这个函数在这一点的值(exp(x));
- 相反,exp(x)的积分就是它自己:exp(x),即:从负无穷大到x的曲线下方面积也是exp(x)。

可以想象e在微积分中非常重要,同时自然常数e也是物理学中的一个重要数字,它通常出现在有关波(举个栗子:电磁波)的方程之中。欧拉公式在电磁学中应用非常广泛,如果想要理解其物理原理,必须牢记欧拉公式:exp(iθ) = cosθ + isinθ(关于虚数/复数的意义,忘记的同学,请参考《阻容感基础:电阻器分类》“写在开头”章节);同时得到了一个被称为史上最完美的数学公式:
![]()
这个公式是如此的简洁又如此的重要,将数学中最重要的几个数:e,π,i,1,0,完美的呈现在一个公式中。
从exp(iθ) = cosθ + isinθ公式中,我们可以得到对于电路应用非常重要的一些数学结论:

- 什么是传递函数
我曾经在阻容感专题中吹了个牛:要在不用“高等数学”的基础上把硬件基础知识给讲清楚了,还要把那些扯出来的谎给圆回来。但到了这个节骨点,我只能举双手双脚投降,然后美滋滋地祭出自然常数e
,以及指数函数来分析反馈环路这部分内容。
我们在前面的章节已经有了一个传递函数,直流传递函数:Vo/Vin。当然传递函数还有很多不同种定义,例如在《电源变换器基础》中他讨论的阻容(RC)串联充电电路,如下图所示,在开关导通时,给RC电路施加了一个阶跃电压Vi,即系统的输入或激励,然后定义电容器两端电压为输出或响应:Vo(t),因此可得传输函数(输出与输入之比)为:Vo(t)/Vi = 1 – exp(-t/RC)。
——从这个公式我们得到了电容器充电的时间常数τ = 1/RC。

本文深入探讨了自然常数e在数学、物理学和电子工程中的重要性,特别是在电路分析中的应用。介绍了传递函数的概念,如何通过拉普拉斯变换简化微分方程,并展示了波特图在分析系统频率响应中的作用。此外,还讨论了RC滤波器、LC滤波器和开关电源反馈环路的设计与分析,强调了零极点配置对系统稳定性和性能的影响。
最低0.47元/天 解锁文章
570

被折叠的 条评论
为什么被折叠?



