Caffe Smooth_L1_Loss_Layer 问答

问:参数中设置sigma原因是什么?

rbg答:As sigma -> inf the loss approaches L1 (abs) loss. Setting sigma = 3, makes the transition point from quadratic to linear happen at |x| <= 1 / 3**2 (closer to the origin). The reason for doing this is because the RPN bbox regression targets are not normalized by their stdev (unlike in Fast R-CNN), because the statistics of the targets are changing constantly throughout learning. In a future update I may simply replace smooth L1 with (hard) L1 which I believe will likely work as well and be simpler (no sigma, etc.).

问:为什么Smooth_L1_loss对target box(bottom[1])也进行反向传播?

rbg答:Smooth L1 loss can be used in cases where you do want to bprop to both inputs (e.g., in a “siamese” network). In the case of Fast R-CNN, we don’t need derivatives for the bbox regression labels, but the layer is more general than its use in Fast R-CNN.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值