第二章 认知诊断评估中属性界定的方法(规则空间)

第一节 Q矩阵

测验或评估中所涉及的潜在技能模型或者认知模型采用一个Q矩阵来刻画。

Q矩阵是由1和0两种元素构成的矩阵。

元素为1表示正确作答项目要求掌握该属性,为0不要求。

要构建诊断的潜在技能模型或认知模型,就是要构建测验Q矩阵,主要包括Q矩阵元素进行指定和验证

第二节 Q矩阵指定,选择和验证方法。

一、规则空间模型下属性指定,选择和验证方法。

规则空间(Rule Space)是规则空间模型(Rule Space Model, RSM)的核心概念之一。它是一种用于认知诊断的统计方法,旨在通过分析被试者在测试项目上的反应模式,推断其潜在的知识状态(即掌握了哪些技能或规则)。规则空间模型结合了项目反应理论(IRT)分类分析,能够将被试者的反应模式映射到一个预先定义的规则空间中。

以下是对规则空间的详细解释,帮助你更好地理解它的含义和作用。


1. 规则空间的定义

规则空间是所有可能的潜在知识状态的集合。每个潜在知识状态表示被试者是否掌握了某些特定的技能或规则。例如:

  • 如果有3个技能(Skill1, Skill2, Skill3),每个技能有两种状态(0 = 未掌握,1 = 掌握),那么规则空间就是所有可能的技能组合,共有 (2^3 = 8) 种状态。

规则空间可以用一个矩阵表示,其中每一行代表一个潜在知识状态,每一列代表一个技能。例如:

Skill1Skill2Skill3
000
100
010
110
001
101
011
111

2. 规则空间的作用

规则空间的作用是提供一个分类框架,将被试者的反应模式映射到某个特定的潜在知识状态。具体来说:

  • 每个被试者的反应模式(即在测试项目上的得分)会被分析,并与规则空间中的每个状态进行比较。

  • 通过计算反应模式与每个状态的匹配程度(例如,使用距离度量),可以将被试者分类到最接近的状态。

例如:

  • 如果一个被试者的反应模式与状态 (1, 1, 0) 最匹配,那么可以推断该被试者掌握了 Skill1 和 Skill2,但未掌握 Skill3。


3. 规则空间与Q矩阵的关系
  • Q矩阵定义了测试项目与技能之间的关系。例如,Q矩阵中的每一行表示一个项目,每一列表示一个技能,矩阵中的值(0或1)表示该项目是否测量了该技能。

  • 规则空间是基于Q矩阵生成的。它描述了所有可能的技能组合,而这些组合是通过Q矩阵中的技能定义的。

例如:

  • 如果Q矩阵定义了3个技能(Skill1, Skill2, Skill3),那么规则空间就是这3个技能的所有可能组合(共8种状态)。


4. 规则空间模型的步骤

规则空间模型的实现通常包括以下步骤:

  1. 定义Q矩阵:明确每个项目测量了哪些技能。

  2. 生成规则空间:列出所有可能的潜在知识状态。

  3. 分析被试者反应:将被试者的反应模式与规则空间中的每个状态进行比较。

  4. 分类被试者:将被试者分类到最匹配的潜在知识状态。

  5. 评估分类结果:计算分类的准确性,并解释被试者的知识状态。


5. 规则空间的示例

假设我们有一个测试,包含3个技能(Skill1, Skill2, Skill3)和4个项目。Q矩阵如下:

Skill1Skill2Skill3
Item1100
Item2010
Item3110
Item4001

根据Q矩阵,规则空间是所有可能的技能组合:

Skill1Skill2Skill3
000
100
010
110
001
101
011
111

6. 规则空间的直观理解

可以将规则空间想象成一个地图,每个潜在知识状态是地图上的一个点。被试者的反应模式就像是一个“坐标”,通过计算与地图上每个点的距离,找到最接近的点(即最匹配的状态)。


7. 规则空间模型的优势
  • 解释性强:能够明确推断被试者掌握了哪些技能。

  • 灵活性高:适用于多种认知诊断场景。

  • 结合IRT:能够处理项目反应理论中的不确定性。

# 1. 安装并加载必要的包
install.packages("CDM")  # 如果尚未安装
library(CDM)

# 2. 创建Q矩阵
# Q矩阵定义了项目与技能之间的关系
Q <- matrix(c(
  1, 0, 0,  # Item1测量Skill1
  0, 1, 0,  # Item2测量Skill2
  1, 1, 0,  # Item3测量Skill1和Skill2
  0, 0, 1   # Item4测量Skill3
), nrow=4, ncol=3, byrow=TRUE)

# 为Q矩阵添加行名和列名
rownames(Q) <- paste0("Item", 1:4)
colnames(Q) <- paste0("Skill", 1:3)

# 打印Q矩阵
print("Q矩阵:")
print(Q)

# 3. 生成规则空间
# 规则空间是所有可能的潜在知识状态组合
# 对于3个技能,规则空间有2^3 = 8种状态
rule_space <- expand.grid(Skill1=c(0,1), Skill2=c(0,1), Skill3=c(0,1))
print("规则空间:")
print(rule_space)

# 4. 生成模拟数据
# 使用规则空间和Q矩阵生成被试者的反应数据
set.seed(123)  # 设置随机种子以保证结果可重复
N <- 100  # 被试者数量
true_states <- rule_space[sample(1:nrow(rule_space), N, replace=TRUE), ]  # 随机生成真实知识状态
data <- matrix(0, nrow=N, ncol=nrow(Q))  # 初始化反应数据

# 根据Q矩阵和真实知识状态生成反应数据
for (i in 1:N) {
  for (j in 1:nrow(Q)) {
    # 如果被试者掌握了项目所需的所有技能,则正确回答的概率较高
    required_skills <- Q[j, ]
    if (all(true_states[i, ] >= required_skills)) {
      data[i, j] <- rbinom(1, 1, 0.9)  # 正确回答的概率为90%
    } else {
      data[i, j] <- rbinom(1, 1, 0.2)  # 错误回答的概率为80%
    }
  }
}

# 打印模拟数据的前几行
print("模拟数据的前几行:")
print(head(data))

# 5. 规则空间模型分类
# 使用最近邻方法将被试者分类到规则空间中的某个状态
classify_to_rule_space <- function(data, Q, rule_space) {
  classifications <- matrix(0, nrow=nrow(data), ncol=ncol(rule_space))
  for (i in 1:nrow(data)) {
    # 计算被试者反应与每个规则空间状态的匹配程度
    distances <- apply(rule_space, 1, function(state) {
      sum(abs(data[i, ] - as.numeric(state %*% t(Q))))
    })
    # 选择距离最小的状态作为分类结果
    classifications[i, ] <- as.matrix(rule_space[which.min(distances), ])
  }
  return(classifications)
}

# 进行分类
classified_states <- classify_to_rule_space(data, Q, rule_space)
print("被试者的分类结果:")
print(head(classified_states))

# 6. 评估分类准确性
# 计算分类结果与真实知识状态的一致性
accuracy <- mean(rowSums(classified_states == true_states) == ncol(rule_space))
print(paste("分类准确率:", round(accuracy * 100, 2), "%"))

# 7. 可视化规则空间
# 使用热图可视化规则空间
heatmap(as.matrix(rule_space), Rowv=NA, Colv=NA, col=c("white", "black"), scale="none",
        main="规则空间可视化", xlab="技能", ylab="状态")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值