第二章 认知诊断评估中属性界定的方法-续(融合模型)

融合模型在认知诊断评估(CDA)中的应用

融合模型(Fusion Model)是一种通过整合多个模型或数据源的信息来提高预测性能的方法。在认知诊断评估(Cognitive Diagnostic Assessment, CDA)中,融合模型被广泛应用于结合不同认知诊断模型(如DINA、DINO、GDINA、RUM、LCDM等)的结果,从而更准确地诊断学生的知识状态。以下是融合模型在CDA中的详细解析:


1. 融合模型的核心思想

融合模型的核心思想是通过整合多个模型的优势,弥补单一模型的不足,从而提高诊断的准确性和可靠性。在CDA中,融合模型的主要目标是:

  • 结合不同认知诊断模型的输出:例如,将DINA模型的严格性和GDINA模型的灵活性结合起来。

  • 提高诊断结果的稳定性:通过减少单一模型的偏差和方差,增强诊断结果的鲁棒性。

  • 适应复杂评估需求:通过灵活融合多种模型,满足不同测试场景的需求。


2. 常见认知诊断模型简介

在CDA中,有多种认知诊断模型可用于分析学生的知识状态。以下是几种常见模型的简介:

(1)DINA模型(Deterministic Input, Noisy “And” Gate Model)
  • 核心思想:假设学生在掌握所有相关属性的情况下才能正确回答题目,但存在一定的猜测和失误概率。

  • 参数

    • 猜测参数(guessing parameter):学生未掌握相关属性但仍答对题目的概率。

    • 失误参数(slipping parameter):学生掌握了相关属性但仍答错题目的概率。

  • 优点:模型简单,易于解释。

  • 缺点:假设较强,可能不适合复杂题目。

(2)DINO模型(Deterministic Input, Noisy “Or” Gate Model)
  • 核心思想:假设学生只要掌握任意一个相关属性即可正确回答题目,但存在一定的猜测和失误概率。

  • 参数:与DINA模型类似,包括猜测参数和失误参数。

  • 优点:适合考察多个替代性知识属性的题目。

  • 缺点:假设较强,可能不适合复杂题目。

(3)GDINA模型(Generalized DINA Model)
  • 核心思想:DINA模型的广义版本,允许题目与知识属性之间的关系更加灵活。

  • 参数:包括主效应和交互效应,能够捕捉更复杂的题目-属性关系。

  • 优点:灵活性高,适合复杂题目。

  • 缺点:模型复杂度高,计算成本较大。

(4)RUM模型(Rule-Based Mixture Model)
  • 核心思想:基于规则的混合模型,假设学生在不同知识状态下的答题概率不同。

  • 参数:包括规则参数和混合比例参数。

  • 优点:能够捕捉学生知识状态的异质性。

  • 缺点:模型复杂度高,参数估计难度较大。

(5)LCDM模型(Logistic Cognitive Diagnosis Model)
  • 核心思想:基于逻辑回归的认知诊断模型,允许题目与知识属性之间的关系更加灵活。

  • 参数:包括主效应和交互效应,能够捕捉复杂的题目-属性关系。

  • 优点:灵活性高,适合多种测试场景。

  • 缺点:模型复杂度高,计算成本较大。

(6)RRUM模型(Reduced Reparameterized Unified Model)
  • 核心思想:RUM模型的简化版本,通过重新参数化减少模型复杂度。

  • 参数:包括主效应和简化后的交互效应。

  • 优点:计算效率高,适合大规模数据分析。

  • 缺点:灵活性略低于RUM模型。


3. 融合模型在CDA中的实现方法

在CDA中,融合模型通常通过以下方式实现:

(1)模型平均(Model Averaging)
  • 方法:将多个认知诊断模型(如DINA、DINO、GDINA、RUM等)的预测结果进行加权平均,生成最终的诊断结果。

  • 优点:简单直接,能够有效减少单一模型的偏差。

  • 示例

    • 使用DINA模型和GDINA模型分别诊断学生的知识状态。

    • 对两个模型的诊断结果进行加权平均,得到更稳定的结果。

(2)模型堆叠(Model Stacking)
  • 方法:使用一个元模型(Meta-Model)来整合多个基模型(Base Models)的预测结果。

  • 步骤

    1. 使用多个基模型(如DINA、DINO、GDINA、RUM等)对学生的知识状态进行初步诊断。

    2. 将基模型的诊断结果作为输入,训练一个元模型(如逻辑回归、随机森林等)。

    3. 使用元模型生成最终的诊断结果。

  • 优点:能够捕捉基模型之间的复杂关系,显著提高诊断准确性。

  • 示例

    • 使用DINA模型和RUM模型作为基模型,生成初步诊断结果。

    • 使用逻辑回归作为元模型,结合两个基模型的结果,生成最终诊断。

(3)层次融合(Hierarchical Fusion)
  • 方法:在不同层次上结合多个模型的结果。例如,先使用DINA模型和GDINA模型分别进行诊断,然后在更高层次上结合两者的结果。

  • 优点:灵活性高,能够充分利用不同模型的优势。

  • 示例

    • 在第一层次,使用DINA模型和GDINA模型分别诊断学生的知识状态。

    • 在第二层次,使用一个融合算法(如加权平均或投票法)结合两个模型的诊断结果。


4. 融合模型的优势

在CDA中,融合模型具有以下显著优势:

  • 提高诊断准确性:通过结合多个模型的优势,能够更准确地反映学生的知识状态。

  • 增强鲁棒性:减少单一模型的偏差和方差,提高诊断结果的稳定性。

  • 灵活性高:可以结合不同类型的认知诊断模型,适应多种评估需求。

  • 适应复杂场景:能够处理复杂的题目-属性关系,适合多样化的测试场景。


5. 融合模型的挑战

尽管融合模型在CDA中具有显著优势,但其应用也面临一些挑战:

  • 模型选择:需要选择合适的基模型和融合方法,以达到最佳效果。

  • 计算成本:融合模型通常需要更多的计算资源和时间。

  • 解释性:融合模型的结果可能较难解释,特别是在使用复杂元模型时。

  • 数据质量:融合模型的性能高度依赖于输入数据的质量,噪声或缺失值可能影响诊断结果。


6. 实际应用中的注意事项

在实际应用中,使用融合模型进行认知诊断评估时需要注意以下几点:

  • 数据预处理:确保测试数据的高质量,避免噪声和缺失值对诊断结果的影响。

  • 模型验证:使用交叉验证等方法评估融合模型的性能,确保其泛化能力。

  • 专家评审:结合领域专家的意见,对融合模型的结果进行评审和调整。

  • 参数调优:对融合模型中的参数(如权重、元模型类型等)进行调优,以提高诊断性能。


7. 融合模型的典型应用场景

融合模型在CDA中的典型应用场景包括:

  • 大规模教育评估:如国家或地区层面的学业水平测试,通过融合模型提高诊断的准确性和可靠性。

  • 个性化学习:通过融合模型精准诊断学生的知识状态,为个性化学习路径提供依据。

  • 教学改进:通过融合模型分析学生的知识掌握情况,帮助教师改进教学策略。


8.总结

融合模型在认知诊断评估(CDA)中扮演着重要角色,通过整合多个认知诊断模型(如DINA、DINO、GDINA、RUM、LCDM等)的结果,能够显著提高对学生知识状态的诊断准确性和可靠性。尽管融合模型的设计和实现面临一定的挑战,但其在提高诊断性能方面的潜力使其成为CDA中的重要工具。未来,随着数据质量的提升和融合算法的改进,融合模型在教育和心理学领域的应用将更加广泛和深入。

下面写一段代码进行简单的数据模拟:

问题:

在教育和心理学中,认知诊断评估(CDA)旨在通过学生的答题数据,推断他们在多个知识属性(或技能)上的掌握情况。例如:

  • 学生是否掌握了“加法”和“乘法”?

  • 学生在“几何”和“代数”上的表现如何?

为了实现这一目标,我们需要:

  1. 生成模拟数据:模拟学生的知识状态和答题数据。

  2. 拟合认知诊断模型(融合模型):使用DINA和GDINA模型预测学生的知识状态。

  3. 融合多个模型的预测结果:通过随机森林模型结合DINA和GDINA的预测结果,提高诊断的准确性。

注:

  • DINA模型:假设学生必须掌握所有相关属性才能答对题目。

  • GDINA模:允许更灵活的题目与知识属性之间的关系。

# 安装必要的包(如果尚未安装)
install.packages("CDM")  # 用于认知诊断模型(如DINA、GDINA)
install.packages("caret")  # 用于机器学习模型训练和评估
install.packages("dplyr")  # 用于数据操作
install.packages("randomForest")  # 用于随机森林模型

# 加载包
library(CDM)  # 加载CDM包
library(caret)  # 加载caret包
library(dplyr)  # 加载dplyr包
library(randomForest)  # 加载randomForest包

# 设置随机种子以确保结果可重复
set.seed(123)  # 设置随机种子为123,确保每次运行结果一致

# 生成模拟数据
n_students <- 100  # 学生数量
n_items <- 20       # 题目数量
n_attrs <- 3        # 知识属性数量

# 生成Q矩阵(题目与知识属性的关系矩阵)
Q_matrix <- matrix(c(
  1, 0, 0,
  1, 1, 0,
  0, 1, 0,
  0, 1, 1,
  1, 0, 1,
  1, 1, 1,
  0, 0, 1,
  1, 0, 0,
  0, 1, 0,
  0, 0, 1,
  1, 1, 0,
  0, 1, 1,
  1, 0, 1,
  1, 1, 1,
  0, 0, 1,
  1, 0, 0,
  0, 1, 0,
  0, 0, 1,
  1, 1, 0,
  0, 1, 1
), nrow = n_items, ncol = n_attrs, byrow = TRUE)  # 生成一个20x3的Q矩阵,表示题目与知识属性的关系

# 生成学生的知识状态(真实值)
true_alpha <- matrix(sample(0:1, n_students * n_attrs, replace = TRUE), nrow = n_students, ncol = n_attrs)  # 生成一个100x3的矩阵,表示每个学生的知识状态(0或1)

# 手动生成学生的答题数据
response_data <- matrix(0, nrow = n_students, ncol = n_items)  # 初始化一个100x20的答题数据矩阵,初始值为0
guess <- 0.2  # 猜测概率(学生未掌握知识属性但仍答对题目的概率)
slip <- 0.2   # 失误概率(学生掌握了知识属性但仍答错题目的概率)

for (i in 1:n_students) {
  for (j in 1:n_items) {
    # 判断学生是否掌握了所有需要的属性
    required_attrs <- Q_matrix[j, ]  # 获取第j题所需的知识属性
    mastered_attrs <- true_alpha[i, ]  # 获取第i个学生的知识状态
    if (all(mastered_attrs >= required_attrs)) {
      # 学生掌握了所有属性,正确回答的概率是 1 - slip
      response_data[i, j] <- rbinom(1, 1, 1 - slip)  # 生成一个二项分布随机数(0或1),概率为1 - slip
    } else {
      # 学生未掌握所有属性,正确回答的概率是 guess
      response_data[i, j] <- rbinom(1, 1, guess)  # 生成一个二项分布随机数(0或1),概率为guess
    }
  }
}

# 拟合DINA模型
dina_model <- CDM::din(response_data, Q_matrix, rule = "DINA")  # 使用DINA模型拟合答题数据,rule = "DINA"表示使用DINA规则

# 拟合GDINA模型
gdina_model <- CDM::gdina(response_data, Q_matrix, rule = "GDINA")  # 使用GDINA模型拟合答题数据,rule = "GDINA"表示使用GDINA规则

# 提取DINA模型的预测结果(知识状态)
dina_predictions <- dina_model$pattern[, 1:n_attrs]  # 提取DINA模型预测的知识状态(100x3矩阵)

# 提取GDINA模型的预测结果(知识状态)
gdina_predictions <- gdina_model$pattern[, 1:n_attrs]  # 提取GDINA模型预测的知识状态(100x3矩阵)

# 将预测结果和真实值合并为数据框
fusion_data <- data.frame(
  dina_attr1 = dina_predictions[, 1],  # DINA模型预测的第一个知识属性
  dina_attr2 = dina_predictions[, 2],  # DINA模型预测的第二个知识属性
  dina_attr3 = dina_predictions[, 3],  # DINA模型预测的第三个知识属性
  gdina_attr1 = gdina_predictions[, 1],  # GDINA模型预测的第一个知识属性
  gdina_attr2 = gdina_predictions[, 2],  # GDINA模型预测的第二个知识属性
  gdina_attr3 = gdina_predictions[, 3],  # GDINA模型预测的第三个知识属性
  true_attr1 = true_alpha[, 1]  # 真实的第一个知识属性
)

# 将目标变量转换为因子
fusion_data$true_attr1 <- as.factor(fusion_data$true_attr1)  # 将目标变量true_attr1转换为因子类型,用于分类问题

# 将数据分为训练集和测试集
train_index <- createDataPartition(1:n_students, p = 0.8, list = FALSE)  # 将数据分为训练集和测试集,80%为训练集
train_data <- fusion_data[train_index, ]  # 提取训练集
test_data <- fusion_data[-train_index, ]  # 提取测试集

# 训练随机森林模型
rf_model <- randomForest(
  true_attr1 ~ .,  # 公式:true_attr1为目标变量,其他变量为特征
  data = train_data,  # 训练数据集
  ntree = 100,  # 树的数量(默认500,这里设置为100以加快运行速度)
  mtry = sqrt(ncol(train_data) - 1),  # 每棵树使用的特征数量(默认为特征总数的平方根)
  importance = TRUE  # 计算特征重要性
)

# 查看模型性能
print(rf_model)  # 打印随机森林模型的性能摘要

# 在测试集上进行预测
test_predictions <- predict(rf_model, newdata = test_data, type = "class")  # 使用随机森林模型对测试集进行预测

# 计算准确率
accuracy <- mean(test_predictions == test_data$true_attr1)  # 计算预测结果与真实值的准确率
print(paste("随机森林融合模型的准确率:", round(accuracy, 3)))  # 打印准确率,保留3位小数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值