基本原理,取模(a * b) % p = (a % p * b % p) % p
基本思想,每次*的时候顺便取模,eg:(2^5)%6==(2%6*2%6*2%6*2%6*2%6*2%6)%6, 时间复杂度O(n)
以HDU的一道水题为例子
#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll fastmi(ll base, ll power) {//base为底数,power为指数
ll ans = 1;//ans为每次取模的结果
for (int i = 1; i <= power; ++i) {
ans *= base % 1000;//这里是ans乘取模的base,并没有对ans取模 //这么取模是因为,举例,12%2==((6%2)*(2%2))==(((3%2)*(2%2))*(2%2))
ans %= 1000;//每次*后都取模,避免ans一直在乘,导致long long爆炸
}
return ans;//ans每次都有取模,所以退出循环时自然是最终结果
}
int main() {
ll a, b;
while (cin >> a >> b && (a || b)) {
cout << fastmi(a, b) << endl;
}
}
接下来是快速幂思想及其二进制优化
快速幂算法的核心思想就是每一步都把指数分成两半,而相应的底数做平方运算
eg:3^10=(3*3)*(3*3)*(3*3)*(3*3)*(3*3)=(3*3)^5=(3*3)^5=(9^4)*(9^1)=(9^4)*(9^1)=(6561^1)*(9^1)最后变成都是指数为1的,然后存入
也就是我们每次都去二分指数
这样,复杂度就从n极大减少(变为n不断2分到只剩1)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll fastmi(ll base, ll power) {
ll ans = 1;
while (power) {//只要指数大于1,就可以继续分 //power&1使用位运算,表示power为奇数时
if (power & 1)ans = (ans * base) % 1000;//把指数为1的base存入ans中,剩余偶数幂去二分,这里的取余,一是使每个指数1的base取余了,二是保证最后的结果是取余的
base = (base * base) % 1000;//底数变为原来的平方
power >>=1; // 无论你奇数还是偶数,除2结果一样(因为整型会把奇数除2得的0.5去掉 power>>=1是位运算(>>=位运算还有个等号,不是>>就好),右移,等于除以2
} //要么写出power=power>>1,直接Power>>1,power值是不会改变的
return ans;
}
int main() {
ll a, b;
while (cin >> a >> b && (a || b)) {
cout << fastmi(a, b) << endl;
}
}