快速幂及其二进制优化

基本原理,取模(a * b) % p = (a % p * b % p) % p

基本思想,每次*的时候顺便取模,eg:(2^5)%6==(2%6*2%6*2%6*2%6*2%6*2%6)%6, 时间复杂度O(n)

以HDU的一道水题为例子

#include <bits/stdc++.h>
using namespace std;
#define ll long long



ll fastmi(ll base, ll power) {//base为底数,power为指数
	ll ans = 1;//ans为每次取模的结果
	for (int i = 1; i <= power; ++i) {
		ans *= base % 1000;//这里是ans乘取模的base,并没有对ans取模                //这么取模是因为,举例,12%2==((6%2)*(2%2))==(((3%2)*(2%2))*(2%2))
		ans %= 1000;//每次*后都取模,避免ans一直在乘,导致long long爆炸                      
	}
	return ans;//ans每次都有取模,所以退出循环时自然是最终结果
}

int main() {
	ll a, b;
	while (cin >> a >> b && (a || b)) {
		cout << fastmi(a, b) << endl;
	}

}

接下来是快速幂思想及其二进制优化

快速幂算法的核心思想就是每一步都把指数分成两半,而相应的底数做平方运算

eg:3^10=(3*3)*(3*3)*(3*3)*(3*3)*(3*3)=(3*3)^5=(3*3)^5=(9^4)*(9^1)=(9^4)*(9^1)=(6561^1)*(9^1)最后变成都是指数为1的,然后存入

也就是我们每次都去二分指数

这样,复杂度就从n极大减少(变为n不断2分到只剩1)

#include <bits/stdc++.h>
using namespace std;
#define ll long long


ll fastmi(ll base, ll power) {
	ll ans = 1; 
	while (power) {//只要指数大于1,就可以继续分          //power&1使用位运算,表示power为奇数时
		if (power & 1)ans = (ans * base) % 1000;//把指数为1的base存入ans中,剩余偶数幂去二分,这里的取余,一是使每个指数1的base取余了,二是保证最后的结果是取余的
		base = (base * base) % 1000;//底数变为原来的平方
		power >>=1; // 无论你奇数还是偶数,除2结果一样(因为整型会把奇数除2得的0.5去掉    power>>=1是位运算(>>=位运算还有个等号,不是>>就好),右移,等于除以2
	}                                                                                  //要么写出power=power>>1,直接Power>>1,power值是不会改变的
	return ans;
}


int main() {
	ll a, b;
	while (cin >> a >> b && (a || b)) {
		cout << fastmi(a, b) << endl;
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值