容斥原理之求区间中与某数互质的个数

一,定义

为了计算时不重不漏,就要不断加减重复部分

观察到:即奇数长度的前面是加号,偶数长度的为减号

二,思路:我们这里可以通过求不互质的数,自然就能得出互质的数,求不互质比较简单(因为他们是目标的质因子的倍数,我们只需要不重不漏的求出这些数就好)

三,二进制实现

缺点,我每次都要遍历全部质因子

vector<ll>v;
void prime(ll x){//找到x的所有质因子
	v.clear();
	for(int i=2;i*i<=x;++i){
		if(!(x%i))v.push_back(i);
		while(!(x%i))x/=i;//只有x还存在这个质因子,就一直除到没有
	}
	if(x>1)v.push_back(x);//如果质因子全部提取,那么最终x为0,如果没有为0,说明剩下的x也是质数(就是质因子)
}

ll rongchi(ll d){//求解在范围(1,d)内与x互质的数
	ll ans=0;
	for(int i=1;i<(1<<(int)v.size());++i){//选用多少个质因子,其组合就是2^k(k==v.size()),但是要减一,因为组合包括全部不要(空集),而这个组合数,我们就可以把二进制第几位为1看做使用了他(设最右边为第0位)
		ll sum=1;ll len=0;//len记录当前使用了质因子数量
		for(int j=0;j<(int)v.size();++j){
			if((i>>j)&1){//右移j位,为1,说明使用了第j位
				sum*=v[j];
				len++;
			}
		}
		if(len&1)ans+=d/sum;//长度奇数就加,偶数减
		else ans-=d/sum;//d/sum表示在(1,d)范围内sum的倍数的个数,这些数毫无疑问与x不互质
	}
	return d-ans;//注意,我们这样求出的ans是不互质的数
}

四,dfs实现(更快)

ll ans;
ll d;
vector<ll>v;
void prime(ll x)
{
	v.clear();
	for (int i = 2; i * i <= x; ++i)
		{
			if (!(x % i))
				{
					v.push_back(i);
					while (!(x % i))x /= i;
				}
		}
	if (x > 1)v.push_back(x);
}

void dfs(ll num, ll sum, ll len) //num表示已经记录过多少数(没存也算),sum表示存入数的乘积,len表示存入数的个数
{
	if (num == (int)v.size()) //只有遍历过所有质因子(但是这里的优点是遍历具有继承性,不用每次从头开始),我才进入,这样会保证进入的是所有组合情况
		{
			if (len) //至少存入一个数才可以进入
				{
					if (len & 1)ans += d / sum;
					else ans -= d / sum;
				}
			return;//能进来说明是遍历过所有质因子,不用再往下遍历了,直接返回,否则死循环
		}
	dfs(num + 1, sum, len);//这里表示,还是存入len个数,但是我继续往下遍历
	dfs(num + 1, sum * v[num], len + 1);//这里表示存入新遍历的数,注意下标是从0开始,所以我遍历到num+1,实际第num+1个质因子的下标是num

}

int main()
{
	ans = 0;
	dfs(0, 1, 0);
}

五,一道例题(理解后可以说就是模板题):D. Count GCD

思路:gcd(b1,b2,b3,.....,bi)=ai等价于gcd(ai-1,bi)=ai等价于gcd(a[i-1]/a[i],b[i]/a[i])=1,即a[i-1]/a[i]与b[i]/a[i]互质,变成求满足情况的b序列,即求范围在(1,m/a[i])的bi/a[i]的个数的组合

当然,我们也发现,a[i]一定是a[i-1]的因子,不满足,无解

我们也保证a[i-1]/a[i],b[i]/a[i],m/a[i]都是整数,因为a[i]都是因子,整数去除因子还是整数

AC代码

#include <bits/stdc++.h>
using namespace std;
#define ll     long long
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 100;
const int mod = 998244353;

ll n, m;
ll a[N];
ll ans;
ll d;
vector<ll>v;
void prime(ll x)
{
	v.clear();
	for (int i = 2; i * i <= x; ++i)
		{
			if (!(x % i))
				{
					v.push_back(i);
					while (!(x % i))x /= i;
				}
		}
	if (x > 1)v.push_back(x);
}

void dfs(ll num, ll sum, ll len)
{
	if (num == (int)v.size())
		{
			if (len)
				{
					if (len & 1)ans += d / sum;
					else ans -= d / sum;
				}
			return ; 
		}
	dfs(num + 1, sum, len);
	dfs(num + 1, sum * v[num], len + 1);

}

void msolve()
{
	int flag = 1;
	cin >> n >> m;
	ll sum = 1; //一定组合是乘积,初始值赋值0就寄了
	for (int i = 1; i <= n; ++i)
		{
			cin >> a[i];
			if (i >= 2)if (a[i - 1] % a[i])flag = 0;//只要不符合,等下输出0
		}
	if (!flag)
		{
			cout << 0 << endl;
			return ;
		}
	for (int i = 2; i <= n; ++i)//从2开始,是因为1b1的只能是a1(一个数的质数当然是他本身,没有其他情况)
		{
			if (a[i] == a[i - 1])sum = (sum * (m / a[i])) % mod;//(m / a[i])这里括号,不用这里会WA,因为会乘法溢出,能先除就先除     //a[i] == a[i - 1],说明bi就是ai的倍数,所以直接m/ai就是bi的个数
			else
				{
					prime(a[i - 1] / a[i]);
					ans = 0;//ans是每个bi的可以有的值的数量,每次记得初始化
					d = m / a[i];//b[i]/a[i]范围为(1,m/a[i])
					dfs(0, 1, 0);//从遍历0个,存入0个,乘积为1开始
					sum = (sum * (d - ans)) % mod;
				}
		}
	cout << sum << endl;
}

int main()
{
	int t;
	cin >> t;
	while (t--)
		{
			msolve();
		}
	return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值