【阅读随笔】Fast Decomposition of Temporal Logic Specifications for Heterogeneous Teams

文章提出了使用SMT进行CaTL(CapabilityTemporalLogic)公式分解的方法,以解决异构机器人编队控制的效率问题。通过将CaTL公式转化为语法树并应用特定的转换策略,文章展示了如何找到满足原公式要求的子问题解。实验表明,增加机器人数量可以减少找到解决方案的时间,证实了该方法的有效性和效率优势。

这是Rewrite-based的前传,基于SMT完成STL公式的分解。

[1] K. Leahy, A. Jones, and C.-I. Vasile, “Fast Decomposition of Temporal Logic Specifications for Heterogeneous Teams,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 2297–2304, Apr. 2022, doi: 10.1109/LRA.2022.3143304.

Overview

  • 针对CaTL(Capability Temporal Logic),用于描述智能体的能力
  • 用SMT同时完成公式分解与智能体编队(队伍里机器人种类不同)
  • 探究效率与保守型之间的trade-off

1 Intro

  • 本文解决的是针对大型异构的机器人编队的控制计算效率过低的问题
  • 本文所针对的CaTL并不是首次提出,Jones et el. (2019)使用中心化方法解决了对机器人编队的规划问题,本文使用分布式方法
  • Banks et al. (2020)解决了同构机器人编队的任务分解和控制问题,本文解决异构

本文工作

  • 提出CaTL分解的条件
  • 提出基于SMT的分解算法

2 Models and Specification

首先定义以下几个名词

Environment

环境定义为一个转移系统,有限大小的状态空间为 Q Q Q,状态被标签函数 L : Q → 2 A P L:Q\to 2^{AP} L:Q2AP所标记
连接这些状态的边集合为 E \mathcal E E,边上的权重表示状态与状态之间发生转移所消耗的时间。

Agent

  • 单个智能体定义为一个元组 A j = ( q 0 , j , C a p j ) A_j=(q_{0,j},Cap_j) Aj=(q0,j,Capj) 记录下其初始状态和能力
  • s j : Z ≥ → Q ∪ E s_j: \mathbb Z_{\geq}\to Q\cup \mathcal E sj:ZQE 表示智能体 A j A_j Aj产生的状态轨迹
  • n q , c ( t ) n_{q,c}(t) nq,c(t)表示在 t t t时刻在 q q q状态下具有能力 c c c的智能体数量
  • { J l } l ∈ J \{J_\mathscr l\}_{\mathcal l\in\mathcal J} { Jl}lJ 表示对智能体编队的一种分组
  • 同步轨迹
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值