动态规划 01背包 完全背包 多重背包

 

目录

概念

1、动态规划(DP)

2、动态规划求解具有以下的性质:

3、求解思路

01背包问题求解思路

二维数组和一维数组实现01背包问题:

完全背包问题

完全背包问题代码优化:

多重背包问题:

测试程序:

测试结果:

参考:


 

概念

1、动态规划(DP)

a,动态规划(Dynamic Programming,DP)与分治区别在于划分的子问题是有重叠的(不独立),
    解过程中对于重叠的部分只要求解一次,记录下结果,其他子问题直接使用即可,减少了重复计算过程。
b,DP在求解一个问题最优解的时候,不是固定的计算合并某些子问题的解,
    而是根据各子问题的解的情况选择其中最优的。

2、动态规划求解具有以下的性质:


     a、最优子结构性质、子问题重叠性质  
     b、最优子结构性质:最优解包含了其子问题的最优解,不是合并所有子问题的解,而是找最优的一条解线路,选择部分子最优解来达到最终的最优解。
     c、子问题重叠性质:先计算子问题的解,再由子问题的解去构造问题的解(由于子问题存在重叠,把子问题解记录下来为下一步使用,这样就直接可以从备忘录中读取)。其中备忘录中先记录初始状态。

3、求解思路

  ①、将原问题分解为子问题(子问题和原问题形式相同,且子问题解求出就会被保存);
  ②、确定状态:01背包中一个状态就是个物体中第个是否放入体积为背包中;
  ③、确定一些初始状态(边界状态)的值;
  ④、确定状态转移方程,如何从一个或多个已知状态求出另一个未知状态的值。(递推型)

01背包问题求解思路

①、确认子问题和状态
    01背包问题需要求解的就是,为了体积V的背包中物体总价值最大化,件物品中第件应该放入背包中吗?
    为此,我们定义一个二维数组,其中每个元素代表一个状态,即前个物体中若干个放入体积为背包中
    最大价值。数组为:f,其中f[i][j]表示前i件中若干个物品放入体积j为的背包中的最大价值。
②、初始状态
    初始状态为和都为0,前者i=0表示前0个物品(也就是空物品)无论装入多大的包中总价值都为0,
    后者j=0表示体积为0的背包啥价值的物品都装不进去。
③、转移函数

    if (背包体积j小于物品i的体积)
       f[i][j] = f[i-1][j] //背包装不下第i个物体,目前只能靠前i-1个物体装包
    else
       f[i][j] = max(f[i-1][j], f[i-1][j-Vi] + Wi)
    Vi表示第i件物体的体积,Wi表示第i件物品的价值。
    这样f[i-1][j]代表的就是不将这件物品放入背包,而f[i-1][j-Vi] + Wi则是代表将第i件放入背包之后的总价值
    比较两者的价值,得出最大的价值存入现在的背包之中。

 

初始化
“恰好装满背包”时的最优解与没有要求必须把背包装满。

要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。
如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题。

二维数组和一维数组实现01背包问题:

#define MINUSINF  0x80000000
int max(int a, int b)
{
	return a < b ? b : a;
}

void dp_2dArrey_01(int f[6][13],int Cost[], int dem_cost,int V[],int bagV)
{
	for (int i = 1; i < dem_cost; i++)//数组作为参数传递给函数的只是数组首元素的地址,数据还是在内存里的,
		//函数在需要用到后面元素时再按照这个地址和数组下标去内存查找。也就是说后面的元素根本没到函数里来。所以,这里也不能在函数内部用sizeof求数组的大小,必须在外面算好了再传进来。
	{
		for (int j = 1; j <= bagV; j++)//j表示背包容量,当容量增大到最大,
		{
			if (j < V[i])
				f[i][j] = f[i - 1][j];//前一个最优解
			else
				f[i][j] = max(f[i - 1][j], f[i - 1][j - V[i]] + Cost[i]);
			cout << f[i][j] << " ";
		}
		cout << endl;
	}
	cout << f[5][12] << endl;
}

//设 f[v]表示重量不超过v公斤的最大价值, 则f[v]=max(f[v],f[v-w[i]]+c[i]) ,当v>=w[i],1<=i<=n 。
void dp_1dArrey_01(int f[], int Cost[], int dem_cost, int V[], int bagV,bool full)
{
	int i, j;
	if (full)
	{
		f[0] = 0;
		for (i = 1; i < bagV+1; i++)
			f[i] = MINUSINF;
	}
	else
	   memset(f, bagV, 0);
    for (int i = 1; i <dem_cost; i++)
   {
		/*for (int j = bagV; j >= 0; j--)  //注意是逆序 否则会i状态会覆盖i-1状态后面的值,逆序,覆盖后面无所谓
			if(j>=V[i])				//只有j大于V[j]时下面才有意义,否则f[j]空转
				f[j] = max(f[j], f[j - V[i]] + Cost[i]);
				*/
		for (int j = bagV; j >= V[i]; j--)  
			f[j] = max(f[j], f[j - V[i]] + Cost[i]);
    }
	cout << f[bagV] << endl;
}

 

完全背包问题

//完全背包问题  和01背包问题一样,但是每个物品=可以无限次的取
/*
完全背包在选第i种物品时,容积够用情况下,可能有2种以上状态可选,放1个,或者2个,3个,或者不放。找出最大价值的选择

可以利用k = j/weight[i]算出最多可以放几个,然后状态转移方程改为 V[i][j] = max(V[i - 1][j - k*weight[m]] + k * value[i]) 从0到k遍历一遍求出最大值即可

*/

void dp_1dArrey_full_1(int f[], int Cost[], int dem_cost, int V[], int bagV, bool full)
{
	int i, j;
	if (full)
	{
		f[0] = 0;
		for (i = 1; i < bagV + 1; i++)
			f[i] = MINUSINF;
	}
	else
		memset(f, bagV, 0);
	for (int i = 1; i <dem_cost; i++)
	{
		for (int j = bagV; j >= V[i]; j--)  	//跟01背包一样,也是从右向左更新数据,因为更新时候需要上次循环左边的数据
		{
			int k = j / V[i];	//如果能放下,要看看能放几个,然后放几个跟不放所有情况比一下看哪个价值最大
			for (int m = 0; m <= k; m++)
			{
				f[j] = max(f[j - m * V[i]] + m * Cost[i], f[j]);
			}
		}
	}
	cout << f[bagV] << endl;
}

 

 

完全背包问题代码优化:

和01背包问题代码一样,只是第二层for循环顺序

 

因为01背包一个物品放进去后就不能再用了,而完全背包还可以利用,
//所以当前这一次对某个物品做出选择后还可以继续选择,也就是说还可以再放第2个该物品,第三个,等等,
//所以完全背包每次做出选择是取决于当前这一步的,而01背包每次做出选择是取决于上一步(i-1)状态。
//主要就是因为当前这一步一个物品放过以后,表格逐渐向右填写,随着可放空间的增加,可以判断这一步是否还可以再放一个当前的物品。
//跟前面那个求出当前可放的最大物品数,然后从0个放到最大个,本质是一样的。

void dp_1dArrey_full_2(int f[], int Cost[], int dem_cost, int V[], int bagV, bool full)
{
	int i, j;
	if (full)
	{
		f[0] = 0;
		for (i = 1; i < bagV + 1; i++)
			f[i] = MINUSINF;
	}
	else
		memset(f, bagV, 0);
	for (int i = 1; i <dem_cost; i++)
	{
		for (int j = V[i]; j <= bagV; j++)//和01背包完全一样,只是顺序而已,因为只与当前状态有关,不在乎覆盖几次
			f[j] = max(f[j], f[j - V[i]] + Cost[i]);
	}
	cout << f[bagV] << endl;
}

多重背包问题:

 

//相对于完全背包,每个物品的数量是有限的
//我们可以得出状态转移方程:f[i][v] = max(f[i - 1][v - k*w[i]] + k*c[i] | 0 <= k <= n[i])

void dp_1dArrey_many(int f[], int Cost[], int dem_cost, int V[],int num[], int bagV, bool full)
{
	int i, j;
	if (full)
	{
		f[0] = 0;
		for (i = 1; i < bagV + 1; i++)
			f[i] = MINUSINF;
	}
	else
		memset(f, bagV, 0);
	for (int i = 1; i <dem_cost; i++)
	{
		for (int j = bagV; j >= V[i]; j--)  	//跟01背包一样,也是从右向左更新数据,因为更新时候需要上次循环左边的数据
		{
			for (int k = 0; k <= num[i]; k++)
			{
				f[j] = max(f[j - k* V[i]] + k * Cost[i], f[j]);
			}
		}
	}
	cout << f[bagV] << endl;
}

 

测试程序:

int main()
{
	int f[6][13] = { { 0 } };
	int Cost[6] = { 0 , 2 , 5 , 3 , 10 , 4 };  //花费
	int V[6] = { 0 , 1 , 3 , 2 , 6 , 2 }; //物体体积
	int num[6] = { 0,1,2,3,4,5 };
	int bagV = 12;
	cout << "二维数组01背包问题解,不一定装满" << endl;
	dp_2dArrey_01(f, Cost,6,V,bagV);
	int f2[13];
	cout << "一维数组01背包问题解,恰好装满" << endl;
	dp_1dArrey_01(f2, Cost, 6, V, bagV,true);
	cout << "一维数组完全背包问题解,恰好装满,代码未优化" << endl;
	dp_1dArrey_full_1(f2, Cost, 6, V, bagV, true);
	cout << "一维数组完全背包问题解,恰好装满,代码优化" << endl;
	dp_1dArrey_full_2(f2, Cost, 6, V, bagV, true);
	cout << "一维数组多重背包问题解,不一定装满" << endl;
	dp_1dArrey_many(f2, Cost, 6, V,num, bagV, false);
	return 0;
}

 

测试结果:

参考:

https://blog.csdn.net/weixin_39059738/article/details/79924049

https://blog.csdn.net/baiyifeifei/article/details/81355860

https://www.cnblogs.com/A-S-KirigiriKyoko/p/6036368.html

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值