雷达系统中杂波信号的建模与仿真
2 杂波建模与模拟方法
2.1 杂波建模
杂波可以说是雷达在所处环境中接收到的不感兴趣的回波[4]。就像目标回波一样,杂波也是极为复杂的。为了有效地克服杂波对信号检测的影响,需要知道杂波的幅度特性以及频谱特性。除独立的建筑物、岩石等可以认为是固定目标外,大多数地物、海浪杂波都是极为复杂的,它可能既包含有固定的部分又包含有运动的部分,而每一部分反射回来的回波,其振幅和相位都是随机的[5]。通常采用一些比较接近而又合理的数学模型来表示杂波幅度的概率分布特性,这就是雷达杂波模型。目前描述杂波模型主要有三种方式:
(1)描述杂波散射单元机理的机理模型;
(2)描述杂波后向散射系数的概率密度函数的分布模型;
(3)描述由实验数据拟合与频率、极化、俯角、环境参数等物理量的依赖关系的关系模型。
2.1.1 雷达杂波幅度分布模型
到目前为止,人们已经提出了许多杂波模型,有关描述杂波后向散射系数的概率密度函数的分布模型,比较公认的幅度概率密度函数分布模型为Rayleigh分布、LogNormal、Weibull分布、K分布等。
(1) Rayleigh(瑞利)分布
在雷达可分辨范围内,当散射体的数目很多的时候,根据散射体反射信号振幅和相位的随机特性,它们合成的回波包络振幅是服从瑞利分布的[6]。以x表示杂波回波的包络振幅,以σ2表示它的功率,则x的概率密度函数为:
(2-1)
相对应的概率密度函数分布曲线如图2.1所示。
图2.1 瑞利分布概率密度函数分布曲线图
瑞利分布与每个散射体的振幅分布无关,只要求散射体的数目足够多,并且所有散射体中没有一个起主导作用。需要说明的是,瑞利分布只能代表同一个距离单元上杂波从这次扫描到下次扫描的变化规律,它不能用来表示同一个扫描过程中杂波回波的振幅分布,因为杂波的强度一般都是随着距离的增大而减弱的。对于低分辨力雷达,当高仰角和平稳环境时,瑞利分布的杂波模型可以得到较为精确的结果。但是,随着对雷达杂波分布特性分析的逐步深入,人们发现,对于海浪杂波和地物杂波,瑞利分布模型并不能给出令人满意的结果。特别是随着距离分辨力的提高,杂波分布出现了比瑞利分布更长的“尾巴”,即出现高振幅的概率相当大。因而,如果继续采用瑞利分布模型,将出现较高的虚警概率。海浪杂波的分布不仅是脉冲宽度的函数,而且也与雷达极化方式、工作频率、天线视角以及海情、风向和风速等因素有关,地物杂波也受类似因素的影响。对于高分辨力雷达,在低仰角或恶劣海情下,海浪杂波己不服从瑞利分布,而通常能用韦布尔分布来描述。类似地,地物杂波通常能用LogNormal分布来描述[7]。
(2) LogNormal(对数一正态)分布
设x代表杂波回波的包络分布,则x的LogNormal分布是:
(2-2)
其中σ代表lnx的标准差,xw是x的中值。
相对应的概率密度函数分布曲线如图2.2所示:
图2.2 LogNormal分布概率密度函数分布曲线图
LogNormal分布的严重缺点是在最影响虚警和灵敏度的区域里,吻合程度反而较差。对数一正态分布和瑞利分布之间的主要差别在于前者的“尾巴”较长,也就是说,大幅度的概率要比后者大一些。
(3) Weibull(韦布尔)分布
一般来说,对于大多数试验和理论所确定的杂波幅度分布,瑞利分布模型和对数一正态分布模型仅适用于它们中的有限分布。瑞利分布模型一般地倾向于低估实际杂波分布的动态范围,而对数一正态分布倾向于高估实际杂波分布的动态范围[8]。韦布尔杂波分布模型比瑞利分布模型、对数一正态杂波分布模型常常能在更广的环境内精确的表示实际的杂波分布。适当地调整韦布尔分布的参数,能够使它成为瑞利分布或接近于对数一正态分布。通常,在使用高分辨力雷达,低入射角的情况下,海浪杂波能够用韦布尔分布模型精确地描述,地物杂波也能够用韦布尔分布模型描述。
设x代表杂波回波的包络振幅,则x的韦布尔分布为:
(2-3)
其中:xm为尺度参数,是分布的中值;a为分布的形状(斜度)函数。
相对应的概率密度函数分布曲线如图2.3所示:
图2.3 Weibull分布概率密度函数分布曲线图
如果把式(2-3 )形状参数a固定为2,并把改写成2σ2,则式(2-3 )变为:
(2-4)
这就是瑞利分布。
所以,瑞利分布是韦布尔分布的特例。
如果a=1,并把改写成2σ2,则韦布尔分布变为:
(2-5)
这就是指数分布。从信号检测的观点来说,对数一正态分布代表着最恶劣的杂波环境:瑞利分布代表最简单的杂波环境;韦布尔分布是中间模型[9]。在许多情况下,它是一种比较合适的杂波模型,因此,它比瑞利分布能适应更宽的杂波范围。
(4)K分布:
它的表达式如下:
(2-6)
其中x为幅度,a为量化参数,v为形状参数,它的取值范围为一1<v<∞,
它的变化决定了杂波分布的特征。Kv为修正贝塞耳(Bessel)函数。
相对应的概率密度函数分布曲线如图2.4所示:
图2.4 K分布概率密度函数分布曲线图
对于高精度雷达来说,K分布是比较符合杂波数据的统计结果的。实际上,可以把K分布看作是瑞利分布和x2分布的组合:快速起伏的杂波,服从瑞利分布;慢速起伏的杂波,服从x2分布。
雷达杂波幅度的概率密度分布模型描述了杂波信号在时域的一维表示,通常要更好的描述杂波的分布特性,还要描述杂波频域的二维分布特性,这就是杂波的频谱分布模型[10]。
2.1.2 雷达杂波频谱分布模型
雷达杂波的频谱常用以下三种模型表示:
(1) Gaussian(高斯)谱模型: Gaussian谱模型可以表示为
(2-7)
其中σf为杂波谱的标准差。
(2) Cauchy(柯西)谱模型: Cauchy谱模型可以表示为
(2-8)
其中,fc为截止频率,在该频率处信号幅度下降3dB。
(3) AllPole(全极)谱模型: 全极型谱能更好地描述杂波谱的“尾巴”,它的表达式为
(2-9)
式中,fc的意义同柯西谱模型。n的典型值为2~5,当n=2时,全极型谱即为柯西谱,当n=3时,即为通常所说的立方谱。
对于地杂波可采用幅度为瑞利分布、对数一正态分布、韦布尔分布,频谱为高斯型、立方型、指数型的杂波模型[11]。
海杂波可采用幅度为对数一正态分布、韦布尔分布、K分布的高斯杂波模型。
气象杂波和箔条干扰可采用瑞利分布的高斯型杂波模型。
具体对应某种杂波,采用何种幅度分布和频谱模型由实际情况决定。
2.2 相关杂波的模拟方法
2.2.1 相关高斯序列的模拟方法
令x(k△t)和X(n△f)分别是随机过程在时域和频域的复取样,其中△t是时域取样间隔,△f是频域取样间隔。由于离散随机过程采样是独立的,所以对于给定的功率谱序列{S(n△f)},我们就可以通过产生一个独立的随机序列{X(n△f)}的办法来产生随机过程总体,则其总体平均功率为:
(2-10)
产生随机序列的方法是简捷的。首先引入独立随机相位因子序列{ξn},它的各分量均值为零,且其总体平均功率为1,且|{ξn}|2=1。再令
n=0,1,2……Nr
(2-11)
式(2-11)中,Nr是重复周期长度。它是满足(2-10)式的。
采用这种方法必须注意Nr和△f的选择,因为这里考虑的是在时域和频域都是周期重复的随机过程,必须合理的选择Nr和△f,以避免混叠出现。采样频率△f=1/(Nr. △t)。选择Nr的原则是:
N>=max{N,Nc} (2-12)
式(2-12)中,N是所要产生的杂波过程的长度;Nc是杂波过程的相关长度。
利用IFFT变换就可以得到相关随机序列x(k△t),其过程如图2.5所示。
图2.5相关高斯序列产生原理方框图
图2.5中,
(2-13)
当且仅当相位因子{ξn}各分量的概率分布是高斯分布时,{x(k△t)}的各分量才是高斯分布。这样便产生了符合特定功率谱要求的相关高斯分布序列。
ZMNL法需要找到高斯序列与所需序列相关系数之间的非线性关系g(.),且它随不同的分布而不同,故不能对协方差矩阵和概率密度函数进行独立控制[12]。
2.2.2 相关对数正态分布杂波的建模
利用已产生的相关高斯随机序列,可得到相关对数正态分布的随机序列,分析如下:对于随机变量y~N(lnu,σ2) ,做线性变换x=exp(y),得到具有两个参数的对数正态分布随机变量X的PDF为:
(2-14)
式(2-14)中,u为比例因子,根据具体的环境而不同。
由于在时域幅度上的变换会对功率谱产生影响,所以图5.4中的H(f)不再是单纯的高斯谱采样,而是要经过非线性补偿。设Si,j为y(n△t)的自相关函数,对应高斯谱Pi,j为经过补偿的功率谱序列{P(n△t)}对应的自相关函数,设其对应的随机序列为w(n△t),则Si,j与Pi,j有对应关系:
(2-15)
其中,形状参数σ决定了非线性变换造成的谐失真程度,Pi,j经过FFT得到经线性补偿的功率谱序列{P(n△t)}。令图2.5中的
(2-16)
则可得到非线性补偿功率谱高斯分布的随机序列{y(n△t)},在经非线性变换x=exp(y),可得高斯谱对数正态分布的随机序列{x(n△t)},此过程如图2.6所示:
图2.6相关对数止态分布序列产生方框图
2.2.3 相关韦布尔分布杂波的建模
韦布尔分布的概率密度函数为: