RFS自学笔记(三):杂波模型——先用泊松分布确定个数,再用均匀分布作为概率分布

杂波模型是从二项分布推导出来的,即 n n n重伯努利分布,当 n n n趋于无穷大时,此时可近似为泊松分布 C n i p i ( 1 − p ) n − i = λ i e − λ i ! C_n^ip^i(1-p)^{n-i}=\frac{\lambda^ie^{-\lambda}}{i!} Cnipi(1p)ni=i!λieλ
其中, n n n表示总的个数, i i i表示成功的个数, p p p表示伯努利分布中的成功概率, λ \lambda λ是泊松比

杂波点的个数

假设视野是一个二维平面,杂波和物体都会出现在这个二维平面内,设这个二维平面的面积即视野范围是 V V V,现在想知道某个时刻下会出现多少个杂波,如何估计杂波的个数?
对于这个乍一看条件十分少的问题,我们应该能想到的是:杂波个数以及杂波自身的分布如果能符合某些我们学过的概率分布模型就好了,比如二项分布、泊松分布、指数分布之类的,因为这样的话我们就比较容易展开估算了——把问题抽象简化成我们学过的概率模型从而建立方程以完成估算任务,这不就是建模的过程吗?所以,我们学习的很多算法无非都是一个进行建模的过程,十分考验数学基本功。
对于这个问题,我们先这样建模:把视野面积 V V V均匀划分成 n n n个小方格,在每个小方格中要么存在一个杂波,要么不存在一个杂波,即在单独的一个小方格中,杂波的个数符合伯努利分布,而杂波自身符合此方格范围内的均匀分布
( C n t 1 0 P p c 1 − p c ) \begin{pmatrix} Cnt& 1& 0\\ P&p^c &1-p^c \end{pmatrix} (CntP1pc01pc)
其中, C n t Cnt Cnt表示小方格内杂波的个数,取值只能是1或0,P表示各自取值对应的概率值: p c p^c pc表示成功概率即小方格内出现一个杂波的概率是 p c p^c pc

每个小方格内都是一个伯努利分布,那么整个视野内的 n n n个小方格组成的分布则是 n n n重伯努利分布即二项分布,利用二项分布的计算公式可以计算:当杂波个数为 i i i个时对应的概率值即有多大概率使得视野内的杂波个数是 i i i P ( ∣ C k ∣ = i ) = C n i ( p c ) i ( 1 − p c ) n − i P(|C_k|=i)=C_n^i(p^c)^i(1-p^c)^{n-i} P(Ck=i)=Cni(pc)i(1pc)ni其中, C k C_k Ck表示杂波变量,是一个集合,含有 k k k时刻下的所有杂波点, C k = [ C k 1 , C k 2 , . . . , C k m ] C_k=[C_k^1,C_k^2,...,C_k^m] Ck=[Ck1,Ck2,...,Ckm] ∣ C k ∣ |C_k| Ck表示此集合的势即杂波点的个数

当把视野 V V V划分的很细小时即 n → ∞ n\to\infty n时,二项分布就成为了泊松分布。也就是说,整个视野内的杂波个数服从的是泊松分布,设变量 m k c = ∣ C k ∣ m_k^c=|C_k| mkc=Ck,代表的是杂波的个数,则 m k c m_k^c mkc服从泊松分布 m k c ∼ P o ( λ c ) m_k^c\sim Po(\lambda_c) mkcPo(λc)其中, λ c \lambda_c λc是泊松比,需要我们自己确定

观察二项分布的计算公式: p c p^c pc n n n是需要我们自己确定的参数,其中, n n n反映的是我们划分的精细程度, p c p^c pc反映的则是杂波出现的可能性或者说是杂波强度——单位时间内杂波在小方格内出现的次数。而两者的乘积 n p c np^c npc表示的是整个视野上的杂波强度——单位时间内杂波在整个视野内出现的次数。需要注意的是:二项分布的均值恰好是 n p c np^c npc,这意味着,我们可以通过统计的手段得到视野内单位时间内出现的杂波次数,也就得到了 n p c np^c npc的值。
观察泊松分布的计算公式:平均强度 λ c \lambda_c λc是需要我们自己确定的参数。实际上, λ c = n p c \lambda_c =np^c λc=npc,和二项分布是一致的,包括含义也是一样的。

综上:我们完成了杂波个数 m k c m_k^c mkc服从泊松分布 P o ( λ c ) Po(\lambda_c) Po(λc),其中泊松比 λ c \lambda_c λc需要自己确定。这样一来就可以估计某个时刻在视野内出现的杂波的个数了。

具体的分布

到现在为止,我们只是得到了杂波个数的模型即只是知道了某个时刻会出现多少个杂波,但是,我们最终要知道的是这些出现的杂波点的分布特征,以方便我们把杂波点和真实物体点区分开来。所以,接下来需要求解杂波的概率分布。
我们这里认为杂波点自身服从视野面积内的均匀分布——杂波点出现在视野内的任意位置的可能性都是相同的 C k i ∼ u n i f ( V ) = f c ( c ) λ ( c ) = { λ c ∈ V 0 o t h e r s C_k^i\sim unif(V)=f_c(c)\\\lambda(c)=\left\{\begin{matrix} \lambda &c\in V \\ 0&others \end{matrix}\right. Ckiunif(V)=fc(c)λ(c)={λ0cVothers其中, C k i C_k^i Cki表示的是 k k k时刻下的第 i i i个杂波点, λ \lambda λ表示的是整个视野面积上强度(由于这里反映的是个数,所以一般 λ \lambda λ>0)而非概率分布,他主要对应的实际上是泊松分布即对应于估算杂波个数。如果用来表示杂波点的概率分布,需要转变成均匀分布的形式即接下来的标准化。

另外 λ c = ∫ λ ( c ) d c f c ( c ) = λ ( c ) λ c = { 1 V c ∈ V 0 o t h e r s \lambda_c=\int\lambda(c)dc\\f_c(c)=\frac{\lambda(c)}{\lambda_c}=\left\{\begin{matrix} \frac{1}{V}&c\in V \\ 0&others \end{matrix}\right. λc=λ(c)dcfc(c)=λcλ(c)={V10cVothers
这是对其进行标准化处理: d c dc dc积分实际上表示的就是遍历整个视野面积,如果视野内各个位置处的强度都相同即 λ ( c ) = c o n s t a n \lambda(c)=constan λ(c)=constan是常数,那么这完全可以不用写成积分形式而可以直接简单表示成 λ c = λ ( c ) V \lambda_c=\lambda(c)V λc=λ(c)V即强度和面积相乘,得到了在整个视野面积上的平均强度—— λ c \lambda_c λc表示的是视野上的平均强度, λ ( c ) \lambda(c) λ(c)表示的是某个位置处的强度(每个位置点的强度未必完全相等时)。而之所以写成积分形式就是考虑到各个位置处的强度未必相同, λ ( c ) d c \lambda(c)dc λ(c)dc表示一个小方格上的杂波个数,再求积分意味着:把所有方格的杂波个数累加起来得到平均杂波个数即平均强度。而对 λ ( c ) \lambda(c) λ(c)标准化后得到 f c ( c ) f_c(c) fc(c),其代表的是杂波点的概率分布——原本是 λ ( c ) \lambda(c) λ(c)表示某个杂波点的分布,但因为涉及到整个视野即许多杂波点的统一关系,为了保证概率积分为1,因此需要对原本的分布进行标准化以确保最后的全积分结果是1。
举个例子:设 V = 4 , n = 4 , λ ( c ) = 2 V=4,n=4,\lambda(c)=2 V=4,n=4,λ(c)=2,则划分出的小方格的面积是 v = V / n = 1 v=V/n=1 v=V/n=1,小方格上的杂波个数的均值是 v λ ( c ) = 2 v\lambda(c)=2 vλ(c)=2,则整个视野上的杂波个数的期望是 λ c = ∫ λ ( c ) d c = V λ ( c ) = 8 \lambda_c=\int\lambda(c)dc=V\lambda(c)=8 λc=λ(c)dc=Vλ(c)=8.

标准化前的1号小方格上杂波点的分布是 λ ( c ) 1 = { 2 c ∈ v 1 0 o t h e r s \lambda(c)_1=\left\{\begin{matrix} 2&c\in v_1 \\ 0& others \end{matrix}\right. λ(c)1={20cv1others表示在 v 1 v_1 v1区域里,单位时间单位面积上出现的杂波个数是2个?。这里认为四个小方格的强度是一样的,因此 λ ( c ) 1 , λ ( c ) 2 , λ ( c ) 3 , \lambda(c)_1,\lambda(c)_2,\lambda(c)_3, λ(c)1,λ(c)2,λ(c)3, λ ( c ) 4 \lambda(c)_4 λ(c)4的取值是一样的,只是所针对的区域不同而已。

标准化后的1号小方格上杂波点的分布是 f c ( c ) 1 = { 2 λ c = 1 4 c ∈ v 1 0 o t h e r s f_c(c)_1=\left\{\begin{matrix} \frac{2}{\lambda_c}=\frac{1}{4}&c\in v_1 \\ 0& others \end{matrix}\right. fc(c)1={λc2=410cv1others这表示1号小方格的强度 λ ( c ) 1 \lambda(c)_1 λ(c)1在整体强度 λ c \lambda_c λc中所占的比例,可以反映出现的杂波点有多大可能是来自1号小方格?由于四个小方格的强度都是相同的,也就说对一个出现的杂波点,其来自视野面积中的任意位置都是等可能的——均匀分布,因此 f c ( c ) 1 = f c ( c ) 2 = f c ( c ) 3 = f c ( c ) 4 = { 2 λ c = 1 4 = 1 V c ∈ V 0 o t h e r s f_c(c)_1=f_c(c)_2=f_c(c)_3=f_c(c)_4\\=\left\{\begin{matrix} \frac{2}{\lambda_c}=\frac{1}{4}=\frac{1}{V}&c\in V \\ 0& others \end{matrix}\right. fc(c)1=fc(c)2=fc(c)3=fc(c)4={λc2=41=V10cVothers
标准化这一部分似乎理解的还不是很到位,后面再补充吧。这个问题是:理清 λ c , λ ( c ) , V , v , f c ( ) \lambda_c,\lambda(c),V,v,f_c() λc,λ(c),V,v,fc()之间的关系?

对杂波概率分布的求解分成两步(这里需要复习古典概型以及联合概率分布的知识):
1.根据泊松分布确定杂波点个数——估算个数时对应一个概率值
2.对每个杂波点求其对应的概率值,然后累乘
P ( C k ) = P ( C k , m k c ) = P ( m k c ) P ( C k ∣ m k c ) = P o ( m k c ; λ c ) ∏ i = 1 m k c f c ( c k i ) = e − λ c m k c ! ∏ i = 1 m k c λ ( c k i ) P(C_k)=P(C_k,m_k^c)=P(m_k^c)P(C_k|m_k^c)\\= Po(m_k^c;\lambda_c)\prod_{i=1}^{m_k^c}f_c(c_k^i)=\frac{e^{-\lambda_c}}{m_k^c!}\prod_{i=1}^{m_k^c}\lambda(c_k^i) P(Ck)=P(Ck,mkc)=P(mkc)P(Ckmkc)=Po(mkc;λc)i=1mkcfc(cki)=mkc!eλci=1mkcλ(cki)
我们这最后到底是得到了个什么东西?
这个问题是:用事件之间的关系来解释这个公式?

杂波模型的梳理先到这里,还有些地方不够清楚,还需要在仔细看看,后面再补充

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值