
基于CNN-LSTM联合网络的主瓣干扰辨识
经过数据融合处理,能够将不同数据特征进行组合,从多个层面对数据进行初始的特征提取,这样的优点是方便后续更好的对数据进行深层次特征的提取。近年来,随着神经网络的快速发展,伴随着产生卷积神经网络与循环神经网络,两者在分类任务上均具有较好的表现,根据对现有数据的分析,将和波束、方位差和俯仰差天线方向图进行融合,并考虑结合神经网络进行有无干扰的二分类任务,提出了一种基于CNN-LSTM联合网络的主瓣干扰辨识框架,该框架属于端到端的网络架构,整体框架结构如下图。其中,x表示样本向量,j表示类别,表示特征参数。























