【POJ 3641】Pseudoprime numbers

Pseudoprime numbers

Description

Fermat’s theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing “0 0”. Each test case consists of a line containing p and a.

Output

For each test case, output “yes” if p is a base-a pseudoprime; otherwise output “no”.

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output

no
no
yes
no
yes
yes

#include<stdio.h>
#include<string.h>
long long quickcmp(long long i,long long j,long long k)
{
    long long sum=1,base=i;
    while(j)
    {
        if(j&1)
        {
            sum=sum*base%k;
        }
        base=(base%k*base%k)%k;
        j>>=1;
    }
    return sum;
}
int prime(long long a )
{
    int i;
    if(a==2)
    return 1;
    for(i=2;i*i<=a;i++)
    if(a%i==0)
    return 0;
    return 1;
}
int main()
{
    long long p,a;
    while(scanf("%lld%lld",&p,&a)!=EOF&&(a||p))
    {
        if(prime(p))
        printf("no\n");
        else
        {
            if(quickcmp(a,p,p)==a)
            printf("yes\n");
            else 
            printf("no\n");
         } 
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值