支持向量机(Support Vector Machine,简称SVM)是一种监督学习模型,广泛应用于分类和回归分析中。SVM的目标是找到一个最佳的超平面(Hyperplane),将不同类别的数据点分隔开来,同时最大化两类之间的边界(Margin)。本文将详细介绍SVM的理论基础、工作原理、类型、优势与劣势,并通过Python中的scikit-learn
库实现一个具体的分类示例。
版权声明
本文为原创内容,版权所有。未经许可,不得转载或用于商业用途。
版权所有 © 深圳市为也科技有限公司
目录
1. 支持向量机概述
支持向量机(SVM)由Vladimir Vapnik和他的同事在1990年代初期提出,是一种基于统计学习理论的监督学习模型。SVM主要用于