DP

本文详细介绍了动态规划在解决01背包问题中的应用,通过多个实例展示了如何利用动态规划算法实现最大价值的选择。文章涵盖经典01背包问题的解题思路,包括二维数组和滚动数组的方法,并提供了多个不同背景的实例题解,如洛谷P1060开心的金明、洛谷P1049装箱问题等,强调了动态规划在处理这类优化问题中的高效性和实用性。
摘要由CSDN通过智能技术生成

动态规划

简单背包

01背包

每个物品只能有选和不选两种情况,所以也叫01背包
放题目叭

01背包就是有两个属性,一个是体积v和权重w,在满足v的情况下,使得权重的值加起来最大,
鹅鹅鹅,怎么说好呢,一开始我们要这样理解,先画一个表格

体积( 纵)/物品(横)1234m
1
2
3
n

用dp[i][j]来表示这个地方所能产生的最大值,这个空的格子里面就能填上在到这个i的物品的时候,对应的这个体积容量下,我是放还是不放,1.如果这个地方不放,就是把上面一格的直接移下来,dp[i][j]=dp[i-1][j],
2.如果这个地方放i个物品,我就要去上一行里面(j-v[i])里面看一下这个dp[i-1][j-v[i]]是多少,然后再加上这个w[i]
,取一下max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]),然后我就能保证这个格子里面是最大值,然后就一直往下推。

#include<iostream>
#include<stdio.h>
#include <iomanip>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
#include <queue>
#include<vector>
#include <set>
#include <map>
#define Debug(in) cout<<#in<<"="<<(in)<<endl
#define mm(a,x) memset(a,x,sizeof(a))
#define sync std::ios::sync_with_stdio(false);std::cin.tie(0)
#define endl '\n'
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int inf=0x3f3f3f3f;
#define N 1010
int n,m;
int v[N],w[N],dp[N][N];

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=n;++i)
        for(int j=0;j<=m;++j)
        {
            dp[i][j]=dp[i-1][j];
            if(j>=v[i])
                dp[i][j]=max(dp[i-1][j-v[i]]+w[i],dp[i-1][j]);
        }
    cout<<dp[n][m];
    return 0;
}

当然这里是二维数组做的,由于这里下一行只会用到上一行,用一个滚动数组就可以了。
但是要从后往前推,因为从前往后推的时候覆盖了后面的数据,到我想用的时候不是正确的数据。

#define N 1010
int n,m;
int v[N],w[N],dp[N];

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=n;++i)
        for(int j=m;j>=v[i];j--)
        {
           dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
        }
    cout<<dp[m];
    return 0;
}
#include <iostream>
#include<stdio.h>
using namespace std;
#define N 30010
int v[30],w[30],dp[N];
int n,m;
int main()
{
    scanf("%d%d",&n,&m);int x=0;
    for(int i=1;i<=m;++i)
    {
        scanf("%d%d",&v[i],&x);
        w[i]=v[i]*x;
    }

    for(int i=1;i<=m;++i)
        for(int j=n;j>=v[i];j--)
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
    cout<<dp[n];
    return 0;
}

*题目3洛谷P1049 装箱问题

#include <iostream>
#include<stdio.h>
using namespace std;
#define N 20010
int n,m;
int w[35],dp[N],V;
int main()
{
    scanf("%d",&V);
    scanf("%d",&n);
    for(int i=1;i<=n;++i)
        scanf("%d",&w[i]);
    for(int i=1;i<=n;++i)
        for(int j=V;j>=w[i];j--)
        {
            dp[j]=max(dp[j],dp[j-w[i]]+w[i]);
        }
    cout<<V-dp[V];
    return 0;
}

*题目4洛谷 P1048 采药

#include <iostream>
#include <stdio.h>
using namespace std;
#define N 1010
int n,m;
int v[N],w[N],dp[N];
int main()
{
    scanf("%d%d",&m,&n);
    for(int i=1;i<=n;++i) cin>>v[i]>>w[i];
    for(int i=1;i<=n;++i)
        for(int j=m;j>=v[i];j--)
        {
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
        }
    cout<<dp[m];
    return 0;
}

*题目5注意下这个是求方案数!!!
洛谷P1164 小A点菜

#include<iostream>
#include<stdio.h>
using namespace std;
#define N 10010
int n,m;
int w[110],dp[N]={1};
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;++i)
        cin>>w[i];
    for(int i=1;i<=n;++i)
        for(int j=m;j>=w[i];j--)
            dp[j]+=dp[j-w[i]];//方案数!
    cout<<dp[m];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值