C语言——输入两个正整数 m 和 n。求其最大公约数和最小公倍数。

方法一 

#include <stdio.h>
int main()
{
    int m, n, i, x, y;
    x = 1, y = 0;
    printf("请输入两个正整数m和n:\n");
    scanf("%d%d", &m, &n);
    for (i = 1; i <= m && i <= n; i++) 
    {
        if (m % i == 0 && n % i == 0) 
        {
            x = i;
        }
    }
    y = (m * n) / x; 

    printf("最大公约数是:%d\n", x);
    printf("最小公倍数是:%d\n", y);
    return 0;
}

1、首先,程序通过printf函数提示用户输入两个正整数m和n,然后使用scanf函数接收用户的输入并将值分别存储到变量m和n中。

2、接下来,程序进入一个for循环,从1开始遍历直至i等于较小的数(m或n),检查当前数值i是否能同时整除m和n。如果i既能被m整除又能被n整除(即满足条件 m % i == 0 && n % i == 0),那么i就是m和n的一个公约数,并将其赋值给变量x。在这个过程中,x最终会存储最大公约数。

3、在循环结束后,根据数学公式,两个数a和b的最小公倍数可以通过它们的乘积除以它们的最大公约数得到,即:LCM(a, b) = (a * b) / GCD(a, b)。因此,此处直接计算y的值,通过(m * n) / x得到最小公倍数,并将其赋值给变量y。

4、最后,程序利用printf函数输出最大公约数x和最小公倍数y的值。

 

 方法二(推荐)

#include <stdio.h>

int gcd(int m, int n);
int lcm(int m, int n);

int gcd(int m, int n)
{
    while (n != 0)
    {
        int temp = m % n;
        m = n;
        n = temp;
    }
    return m;
}

int lcm(int m, int n)
{
    return (m * n) / gcd(m, n);
}

int main()
{
    int m, n;
    printf("请输入两个正整数:\n");
    scanf("%d%d", &m, &n);
    if (m <= 0 || n <= 0)
    {
        printf("错误:输入必须为正整数。\n");
    }
    else
    {
        int result_gcd = gcd(m, n);
        int result_lcm = lcm(m, n);
        printf("这两个数的最大公约数是:%d\n", result_gcd);
        printf("这两个数的最小公倍数是:%d\n", result_lcm);
    }

    return 0;
}

1、gcd函数

         函数原型为 int gcd(int m, int n),接受两个整数参数m和n。它采用辗转相除法(欧几里得算法)计算并返回这两个数的最大公约数(Greatest Common Divisor, GCD)。在循环中,将较大的数m除以较小的数n,并用余数替换较大的数,然后继续此过程,直到余数为0,此时较小的数即为最大公约数。

2、lcm函数

        函数原型为 int lcm(int m, int n),同样接受两个整数参数m和n。根据数学原理,两数乘积除以它们的最大公约数即可得到它们的最小公倍数(Least Common Multiple, LCM)。所以此函数通过调用gcd函数求出m和n的最大公约数,然后利用公式 (m * n) / gcd(m, n) 计算并返回最小公倍数。

3、main函数

  • 首先提示用户输入两个正整数。
  • 使用scanf从标准输入读取这两个数。
  • 检查输入的数值是否为正整数,若不是则输出错误信息。
  • 如果输入合法,则调用gcd函数和lcm函数分别计算这两个数的最大公约数和最小公倍数。
  • 最后,输出这两个数的最大公约数和最小公倍数。

### 回答1: 可以使用辗转相除法两个正整数最大公约数,而最小公倍数可以通过最大公约数两个正整数的乘积来得。具体步骤如下: 1. 从键盘输入两个正整数ab。 2. ab的最大公约数: - 用a除以b,得到余数r1。 - 如果r1等于,则b就是ab的最大公约数。 - 否则,用b除以r1,得到余数r2。 - 如果r2等于,则r1就是ab的最大公约数。 - 否则,继续用r1除以r2,得到余数r3,以此类推,直到余数为为止。 3. ab的最小公倍数: - 最小公倍数等于ab的乘积除以它们的最大公约数。 4. 输出最大公约数最小公倍数。 下面是一个示例代码: ``` #include <stdio.h> int main() { int a, b, gcd, lcm, temp; printf("请输入两个正整数:\n"); scanf("%d%d", &a, &b); // 最大公约数 temp = a % b; while (temp != ) { a = b; b = temp; temp = a % b; } gcd = b; // 最小公倍数 lcm = a * b / gcd; printf("最大公约数为:%d\n", gcd); printf("最小公倍数为:%d\n", lcm); return ; } ``` ### 回答2: 最小公倍数是指两个或多个数的公倍数中最小的那个数,最大公约数是指两个或多个数的公约数中最大的那个数。 首先,通过键盘输入两个正整数,假设为ab。 然后,我们可以通过辗转相除法求出两个数的最大公约数。假设a > b,则执行以下步骤: 1. 令r = a % b,若r等于0,则b即为最大公约数; 2. 若r不等于0,则交换ab的值,将a的值更新为b,将b的值更新为r,然后继续执行步骤1,直到r等于0。 最后,最小公倍数可以通过两个数的乘积除以最大公约数得到,即 lcm = (a * b) / gcd。 根据以上步骤,我们可以实现以下程序: ```python a = int(input("请输入第一个正整数:")) b = int(input("请输入第二个正整数:")) # 最大公约数 if a < b: a, b = b, a # 交换ab的值,确保a始终大于b while b != 0: temp = b b = a % b a = temp gcd = a # 最小公倍数 lcm = (a * b) // gcd print("最大公约数为:", gcd) print("最小公倍数为:", lcm) ``` 通过以上代码,我们可以输入两个正整数,程序会计算并输出它们的最大公约数最小公倍数。 ### 回答3: 首先,我们需要从键盘上输入两个正整数,可以使用input()函数来实现。代码如下: num1 = int(input("请输入第一个正整数:")) num2 = int(input("请输入第二个正整数:")) 接下来,我们需要编写最大公约数最小公倍数的函数。最大公约数可以使用辗转相除法解,代码如下: def gcd(a, b): while b != 0: temp = a % b a = b b = temp return a 最小公倍数可以通过公式(a * b) / gcd(a, b)来计算,代码如下: def lcm(a, b): return (a * b) // gcd(a, b) 最后,我们可以调用上述两个函数,并输出结果,代码如下: gcd_result = gcd(num1, num2) lcm_result = lcm(num1, num2) print("最大公约数为:", gcd_result) print("最小公倍数为:", lcm_result) 以上就是根据题目要编写的代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code repairman

你的鼓励将是我创作的最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值