菜鸡的算法修炼——二叉堆(数据流中的中位数)

题目描述(引自剑指offer)

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用insert()方法读取数据流,使用getMedian()方法获取当前读取数据的中位数。

菜鸡与大佬的对话

题目分析

一番修炼之后,菜鸡向题目发起了挑战。经过对题目的认真分析,菜鸡想到,要求中位数,可以用一个小顶堆和一个大顶堆来完成。其中小顶堆用来存储较大的一半数据,而大顶堆用来存储较小的一半数据。这样便可根据规则计算中位数。菜鸡发现,在调用insert()方法读取数据流的过程中,维护堆结构的时间复杂度为O(logn),而调用getMedian()获取中位数的时间复杂度为O(1)。思路清晰之后,菜鸡决定用Java代码把自己的心路历程描绘出来。

代码实现

import java.util.PriorityQueue;


public class Solution {


    // 小顶堆
    private PriorityQueue<Integer> minHeap = new PriorityQueue<>();
    // 大顶堆
    private PriorityQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
    
    // 读取数据的方法
    public void insert(Integer number) {
        // 读取数据量为偶数时(计数从0开始)
        if (((minHeap.size() + maxHeap.size()) & 1) == 0) {
            maxHeap.offer(number);
            minHeap.offer(maxHeap.poll());
        } 
        // 读取数据量为奇数时
        else {
            minHeap.offer(number);
            maxHeap.offer(minHeap.poll());
        }
    }
    
    // 获取中位数的方法
    public Double getMedian() {
        // 没有读取任何数据的情况
        if (minHeap.isEmpty()) {
            throw new RuntimeException("No number is available !");
        }
        return (((minHeap.size() + maxHeap.size()) & 1) == 0) ? ((minHeap.peek() + maxHeap.peek()) / 2.0) : (minHeap.peek() + 0.0);
    }
    
}

经过这次修炼,菜鸡惊讶地发现树也可以采用顺序存储的方式进行存储。菜鸡意识到先入为主的思想和墨守成规的观念是多么可怕,唯有批判精神和质疑态度才是探寻真理的法宝……

相关链接

菜鸡的算法修炼——二叉搜索树(二叉搜索树与双向链表)

菜鸡的算法修炼——二叉树(重建二叉树)

菜鸡的算法修炼——平衡二叉树(平衡二叉树)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值