题目描述(引自剑指offer)
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用insert()方法读取数据流,使用getMedian()方法获取当前读取数据的中位数。
菜鸡与大佬的对话
题目分析
一番修炼之后,菜鸡向题目发起了挑战。经过对题目的认真分析,菜鸡想到,要求中位数,可以用一个小顶堆和一个大顶堆来完成。其中小顶堆用来存储较大的一半数据,而大顶堆用来存储较小的一半数据。这样便可根据规则计算中位数。菜鸡发现,在调用insert()方法读取数据流的过程中,维护堆结构的时间复杂度为O(logn),而调用getMedian()获取中位数的时间复杂度为O(1)。思路清晰之后,菜鸡决定用Java代码把自己的心路历程描绘出来。
代码实现
import java.util.PriorityQueue;
public class Solution {
// 小顶堆
private PriorityQueue<Integer> minHeap = new PriorityQueue<>();
// 大顶堆
private PriorityQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
// 读取数据的方法
public void insert(Integer number) {
// 读取数据量为偶数时(计数从0开始)
if (((minHeap.size() + maxHeap.size()) & 1) == 0) {
maxHeap.offer(number);
minHeap.offer(maxHeap.poll());
}
// 读取数据量为奇数时
else {
minHeap.offer(number);
maxHeap.offer(minHeap.poll());
}
}
// 获取中位数的方法
public Double getMedian() {
// 没有读取任何数据的情况
if (minHeap.isEmpty()) {
throw new RuntimeException("No number is available !");
}
return (((minHeap.size() + maxHeap.size()) & 1) == 0) ? ((minHeap.peek() + maxHeap.peek()) / 2.0) : (minHeap.peek() + 0.0);
}
}
经过这次修炼,菜鸡惊讶地发现树也可以采用顺序存储的方式进行存储。菜鸡意识到先入为主的思想和墨守成规的观念是多么可怕,唯有批判精神和质疑态度才是探寻真理的法宝……
相关链接