每日一题——爬楼梯

菜鸡每日一题系列打卡70

每天一道算法题目 

小伙伴们一起留言打卡

坚持就是胜利,我们一起努力!

题目描述(引自LeetCode)

假设你正在爬楼梯。需要n阶你才能到达楼顶。

每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定n是一个正整数。

示例 1:
输入:2
输出:2
解释:有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶
示例 2:
输入:3
输出:3
解释:有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

题目分析

这是一道经典的动态规划题目,但不是一道非动态规划不可的题目。在本题中,菜鸡将尝试使用六种解法进行解答。

其中,第一种解法(普通递归)由于时间复杂度太高,在LeetCode提交中会TLE。其余五种解法均可AC。

Talk is cheap, show you the code!

代码实现

// 普通递归,包含大量重复计算
// 时间复杂度为O(2^n),空间复杂度为O(n)
class Solution {
    public int climbStairs(int n) {
        if (n < 4) return n;
        return climbStairs(n - 1) + climbStairs(n - 2);
    }
}
// 记忆化递归,通过数组来保存中间计算的结果
// 时间复杂度为O(n),空间复杂度为O(n)
class Solution {
    public int climbStairs(int n) {
        if (n < 4) return n;
        int[] tmp = new int[n];
        tmp[0] = 1;
        tmp[1] = 2;
        return getResult(n - 1, tmp);
    }


    private int getResult(int n, int[] tmp) {
        if (tmp[n] > 0) return tmp[n];
        tmp[n] = getResult(n - 1, tmp) + getResult(n - 2, tmp);
        return tmp[n];
    }
}
// 动态规划
// 时间复杂度为O(n),空间复杂度为O(n)
class Solution {
    public int climbStairs(int n) {
        if (n < 4) return n;
        int[] dp = new int[n];
        dp[0] = 1;
        dp[1] = 2;
        for (int i = 2; i < n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n - 1];
    }
}
// 斐波那契数列
// 时间复杂度为O(n),空间复杂度为O(1)
class Solution {
    public int climbStairs(int n) {
        if (n < 4) return n;
        int a = 2, b = 3;
        for (int i = 4; i <= n; i++) {
            int tmp = a + b;
            a = b;
            b = tmp;
        }
        return b;
    }
}
// 斐波那契数列通项公式的矩阵形式
// 利用快速幂的原理,时间复杂度为O(logn),空间复杂度为O(1)
public class Solution {
   public int climbStairs(int n) {
       int[][] a = {{1, 1}, {1, 0}};
       int[][] b = {{1, 0}, {0, 1}};
       while (n > 0) {
           if ((n & 1) == 1) b = multi(b, a);
           a = multi(a, a);
           n >>= 1;
       }
       return b[0][0];
   }
   
   public int[][] multi(int[][] a, int[][] b) {
       int[][] c = new int[2][2];
       for (int i = 0; i < 2; i++) {
           for (int j = 0; j < 2; j++) {
               c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];
           }
       }
       return c;
   }
}
// Binet's Formula
// 时间复杂度为O(logn),空间复杂度为O(1)
public class Solution {
    public int climbStairs(int n) {
        return (int)((Math.pow((1 + Math.sqrt(5)) / 2, n + 1) - Math.pow((1 - Math.sqrt(5)) / 2, n + 1)) / Math.sqrt(5));
    }
}

代码分析

上述六种解法的顺序,也一定程度上展示出了逐步优化的过程。具体的时间复杂度与空间复杂度均已写在每种解法的开始,在此就不再赘述。

执行结果

普通递归执行结果

记忆化递归执行结果

动态规划执行结果

斐波那契数列执行结果

矩阵快速幂执行结果

Binet's Formula执行结果

注意:由于LeetCode平台测试集的限制,并不能简单地根据上述执行结果来比较不同解法之间的优劣,还需要大量的数据验证,才能贴近理论分析的结果。

学习 | 工作 | 分享

????长按关注“有理想的菜鸡

只有你想不到,没有你学不到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值