菜鸡每日一题系列打卡70天
每天一道算法题目
小伙伴们一起留言打卡
坚持就是胜利,我们一起努力!
题目描述(引自LeetCode)
假设你正在爬楼梯。需要n阶你才能到达楼顶。
每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定n是一个正整数。
示例 1:
输入:2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
题目分析
这是一道经典的动态规划题目,但不是一道非动态规划不可的题目。在本题中,菜鸡将尝试使用六种解法进行解答。
其中,第一种解法(普通递归)由于时间复杂度太高,在LeetCode提交中会TLE。其余五种解法均可AC。
Talk is cheap, show you the code!
代码实现
// 普通递归,包含大量重复计算
// 时间复杂度为O(2^n),空间复杂度为O(n)
class Solution {
public int climbStairs(int n) {
if (n < 4) return n;
return climbStairs(n - 1) + climbStairs(n - 2);
}
}
// 记忆化递归,通过数组来保存中间计算的结果
// 时间复杂度为O(n),空间复杂度为O(n)
class Solution {
public int climbStairs(int n) {
if (n < 4) return n;
int[] tmp = new int[n];
tmp[0] = 1;
tmp[1] = 2;
return getResult(n - 1, tmp);
}
private int getResult(int n, int[] tmp) {
if (tmp[n] > 0) return tmp[n];
tmp[n] = getResult(n - 1, tmp) + getResult(n - 2, tmp);
return tmp[n];
}
}
// 动态规划
// 时间复杂度为O(n),空间复杂度为O(n)
class Solution {
public int climbStairs(int n) {
if (n < 4) return n;
int[] dp = new int[n];
dp[0] = 1;
dp[1] = 2;
for (int i = 2; i < n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n - 1];
}
}
// 斐波那契数列
// 时间复杂度为O(n),空间复杂度为O(1)
class Solution {
public int climbStairs(int n) {
if (n < 4) return n;
int a = 2, b = 3;
for (int i = 4; i <= n; i++) {
int tmp = a + b;
a = b;
b = tmp;
}
return b;
}
}
// 斐波那契数列通项公式的矩阵形式
// 利用快速幂的原理,时间复杂度为O(logn),空间复杂度为O(1)
public class Solution {
public int climbStairs(int n) {
int[][] a = {{1, 1}, {1, 0}};
int[][] b = {{1, 0}, {0, 1}};
while (n > 0) {
if ((n & 1) == 1) b = multi(b, a);
a = multi(a, a);
n >>= 1;
}
return b[0][0];
}
public int[][] multi(int[][] a, int[][] b) {
int[][] c = new int[2][2];
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];
}
}
return c;
}
}
// Binet's Formula
// 时间复杂度为O(logn),空间复杂度为O(1)
public class Solution {
public int climbStairs(int n) {
return (int)((Math.pow((1 + Math.sqrt(5)) / 2, n + 1) - Math.pow((1 - Math.sqrt(5)) / 2, n + 1)) / Math.sqrt(5));
}
}
代码分析
上述六种解法的顺序,也一定程度上展示出了逐步优化的过程。具体的时间复杂度与空间复杂度均已写在每种解法的开始,在此就不再赘述。
执行结果
普通递归执行结果
记忆化递归执行结果
动态规划执行结果
斐波那契数列执行结果
矩阵快速幂执行结果
Binet's Formula执行结果
注意:由于LeetCode平台测试集的限制,并不能简单地根据上述执行结果来比较不同解法之间的优劣,还需要大量的数据验证,才能贴近理论分析的结果。
学习 | 工作 | 分享
????长按关注“有理想的菜鸡”
只有你想不到,没有你学不到