每日一题——编辑距离

菜鸡每日一题系列打卡72

每天一道算法题目 

小伙伴们一起留言打卡

坚持就是胜利,我们一起努力!

题目描述(引自LeetCode)

给你两个单词word1和word2,请你计算出将word1转换成word2所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符

  • 删除一个字符

  • 替换一个字符

示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

题目分析

这是一道相对有难度的动态规划题目,其难点在于如何根据题目的规则成功找出状态转移方程。

首先,对题目给出的规则进行进一步的剖析,可以得出,由word1转向word2的最少操作数,同由word2转向word1的最少操作数是一致的,也就是说,对于word1的删除操作,可以转换为对word2的插入操作。因此,本题实质上一共有三种操作:

  • 对word1的插入

  • 对word2的插入

  • 对word1的编辑

基于这波分析,得到状态转移方程就比较容易了。

话不多说,上代码!

代码实现

class Solution {


    public int minDistance(String word1, String word2) {
        int m = word1.length(), n = word2.length();
        // 特殊情况处理
        if (m * n == 0) return m + n;


        // 申请dp数组
        int[][] dp = new int[m + 1][n + 1];
        // 初始化第一行
        for (int i = 1; i <= m; i++) dp[i][0] = i;
        // 初始化第一列
        for (int j = 1; j <= n; j++) dp[0][j] = j;


        // 计算dp数组
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                // 不需要操作
                if (word1.charAt(i) == word2.charAt(j)) dp[i + 1][j + 1] = dp[i][j];
                // 需要编辑或插入操作
                else dp[i + 1][j + 1] = Math.min(dp[i][j], Math.min(dp[i][j + 1], dp[i + 1][j])) + 1;                
            }
        }


        // 返回结果
        return dp[m][n];
    }


}

代码分析

对代码进行分析,程序中使用了双层for循环,对两个字符串的字符进行配对,时间复杂度为O(mn);而就空间而言,需要使用额外的dp数组进行状态的存储,空间复杂度为O(mn)。

执行结果

学习 | 工作 | 分享

????长按关注“有理想的菜鸡

只有你想不到,没有你学不到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值