菜鸡每日一题系列打卡72天
每天一道算法题目
小伙伴们一起留言打卡
坚持就是胜利,我们一起努力!
题目描述(引自LeetCode)
给你两个单词word1和word2,请你计算出将word1转换成word2所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
题目分析
这是一道相对有难度的动态规划题目,其难点在于如何根据题目的规则成功找出状态转移方程。
首先,对题目给出的规则进行进一步的剖析,可以得出,由word1转向word2的最少操作数,同由word2转向word1的最少操作数是一致的,也就是说,对于word1的删除操作,可以转换为对word2的插入操作。因此,本题实质上一共有三种操作:
对word1的插入
对word2的插入
对word1的编辑
基于这波分析,得到状态转移方程就比较容易了。
话不多说,上代码!
代码实现
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
// 特殊情况处理
if (m * n == 0) return m + n;
// 申请dp数组
int[][] dp = new int[m + 1][n + 1];
// 初始化第一行
for (int i = 1; i <= m; i++) dp[i][0] = i;
// 初始化第一列
for (int j = 1; j <= n; j++) dp[0][j] = j;
// 计算dp数组
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
// 不需要操作
if (word1.charAt(i) == word2.charAt(j)) dp[i + 1][j + 1] = dp[i][j];
// 需要编辑或插入操作
else dp[i + 1][j + 1] = Math.min(dp[i][j], Math.min(dp[i][j + 1], dp[i + 1][j])) + 1;
}
}
// 返回结果
return dp[m][n];
}
}
代码分析
对代码进行分析,程序中使用了双层for循环,对两个字符串的字符进行配对,时间复杂度为O(mn);而就空间而言,需要使用额外的dp数组进行状态的存储,空间复杂度为O(mn)。
执行结果
学习 | 工作 | 分享
????长按关注“有理想的菜鸡”
只有你想不到,没有你学不到