数学建模【整数规划】

本文介绍了整数规划的基本概念,区分了线性与非线性,以及MATLAB中的intlinprog函数在求解此类问题中的作用。重点讲解了0-1规划的处理方法和一个实际案例,展示了如何设置目标函数、约束条件和使用intlinprog函数求解整数规划问题。
摘要由CSDN通过智能技术生成

一、整数规划简介

整数规划其实是线性规划和非线性规划的一个特殊情况,即有的变量取值只能是整数,不能是小数。这时候就需要一个新的函数来解决问题。

对于整数规划,分为线性整数规划和非线性整数规划

  • 线性整数规划:MATLAB可进行求解(整数的意思:在线性规划的基础上,加入决策变量取整数的条件)
  • 非线性整数规划:无特定算法,只用用近似算法,如蒙特卡罗模拟、启发式算法

整数中有一类比较特殊的0-1规划:特殊的整数规划,MATLAB中也只能求解线性0-1规划,对于非线性0-1规划也只能近似求解。

二、适用赛题

和前面线性规划和非线性规划的范围差不多。

三、模型流程

四、流程分析

1.提取信息

这一步和线性规划中的相同,不清楚请移步 数学建模【线性规划】 ,这里不再赘述。

2.调用函数

调用MATLAB自带的intlinprog函数。

[x, fval] = intlinprog(f, intcon, A, b, Aeq, beq, lb, ub)

f目标函数的系数向量(必须是求最小值形式下的)
intcon指定哪些决策变量是整数
A, b不等式约束条件的变量系数矩阵和常系数矩阵(必须是<或<=形式下的)
Aeq, beq等式约束条件的系数矩阵和常系数矩阵
lb, ub决策变量的最小取值和最大取值

除了和linprog相同的注意事项,还有

  • intlinprog不能指定初始值(新版本MATLAB可以在ub后加上初始值x0)
  • 加入了intcon参数可以指定哪些决策变量是整数。例如:决策变量有三个:x1,x2,x3;若x1和x3是整数,则intcon = [1, 3]

对于线性整数0-1规划求解,仍然使用intlinprog函数,只不过在lb和ub上做文章。

例如:三个决策变量x1,x2,x3中,x1和x3是0-1变量,x2不限制,则intcon = [1, 3],lb = [0, -inf, 0]的转置,ub = [1, +inf, 1]的转置。

下面通过一个例子结束

目标函数:

min Z = -3x1 - 2x2 - x3

约束条件:

x1 + x2 + x3 ≤ 7

4x1 + 2x2 + x3 = 12

x1, x2 ≥ 0

x3 = 0或1

则代码为

f = [-3; -2; -1];
intcon = 3;
A = ones(1, 3);
b = 7;
Aeq = [4, 2, 1];
beq = 12;
lb = zeros(3, 1);
ub = [+inf; +inf; 1];
[x, fval] = intlinprog(f, intcon, A, b, Aeq, beq, lb, ub);

求解成功。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还有糕手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值