小白量化之路(一)

本文是作者作为统计学专业背景的学习心得,介绍了金融工程中的Alpha和Beta因子,解释了它们在投资策略中的作用。Alpha因子代表超越市场的收益,而Beta因子则与市场波动相关。文中还探讨了高频收益偏度、下行波动占比和量价相关性这三种Alpha策略,并分析了这些因子在股票表现预测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人统计学专业,本科和研究生期间零零碎碎的学了一些编程和金融知识。最近在做偏金融工程的事情,记录一下学习的心得,顺便给各位朋友避避坑。

1、alpha因子和beta因子介绍

首先来讲一下策略中的α\alphaα和和β\betaβ的概念。威廉.夏普在1964年的论文中提出,金融资产的收益拆解成两部分。和市场一起波动的部分为beta收益,不和市场一起波动的部分为alpha收益。beta收益可以看作是一种相对被动的投资收益,也就是承担市场风险所带来的收益。被动型基金主要倚靠beta收益,主动型基金挣的是alpha收益。所以现在市场上大部分基金经理都在努力追求alpha收益。

举个例子,假如某只股票的betabetabeta为2,则当大盘涨了1%时,这只股票会上涨2%,下跌亦如此。而alphaalphaalpha则不受大盘的影响。由CAPM模型。
Ri−Rf=α+β(Rm−Rf)+ϵi R_i - R_f = \alpha + \beta(R_m-R_f)+\epsilon_i RiRf=α+β(R

### Tkinter 量化交易入门教程 #### 使用Tkinter构建简单界面 对于初学者来说,了解如何利用`Tkinter`库来创建图形用户界面(GUI),并将其应用于量化交易环境中是非常重要的。以下是使用`Tkinter`建立基本窗口以及添加几个功能按钮的方法: ```python import tkinter as tk def draw(): print("Draw button clicked") def reset(): print("Reset button clicked") def calculate_buy_point(): print("Calculate buy point button clicked") def calculate_sell_point(): print("Calculate sell point button clicked") win = tk.Tk() win.title('Quantitative Trading GUI') tk.Button(win, text='绘制', width=12, command=draw).place(x=200, y=50) tk.Button(win, text='重置', width=12, command=reset).place(x=200, y=80) tk.Button(win, text='计算买点', width=12, command=calculate_buy_point).place(x=300, y=50) tk.Button(win, text='计算卖点', width=12, command=calculate_sell_point).place(x=300, y=80) win.mainloop() ``` 这段代码展示了如何定义四个不同作用的功能按钮,并设置其位置大小[^4]。 #### 整合量化交易逻辑 为了使上述简单的GUI能够真正参与到量化交易过程中去,还需要进步实现获取市场行情数据、编写具体的买卖策略等功能模块。这通常涉及到与其他API服务对接以取得实时报价信息,或是调用特定算法模型来进行决策判断[^3]。 #### 学习资源推荐 考虑到Python已经成为金融工程领域内广泛使用的工具之,在掌握了定程度的基础之后,可以考虑阅读些专注于此方向的专业书籍或在线课程材料,比如提到过的那本介绍Python3及其多种应用场景——包括但不限于量化投资分析方面的指南[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值