003-3算法笔记【动态规划】01背包

01背包问题

问题描述

给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, 使得 ∑ wi xi≤c,且∑ vi*xi最大.即一个特殊的整数规划问题。

动态规划

问题分析

f[i][c]表示,背包容量C时,前i个物品范围内的最优解

递推公式:
f [ i ] [ c ] = { f [ i − 1 ] [ c ] , w [ i ] > c m a x { f [ i − 1 ] [ c ] , f [ i − 1 ] [ c − w [ i ] ] } + v [ i ] , w [ i ] ≤ c f[i][c] = \begin{cases} f[i-1][ c ] &, w[i] > c \\ max\{f[i-1][ c ],f[i-1][ c-w[i] ] \}+v[i] &, w[i] \leq c \end{cases} f[i][c]={f[i1][c]max{f[i1][c],f[i1][cw[i]]}+v[i],w[i]>c,w[i]c

示例:
在这里插入图片描述

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;
int f[N][N];//f(i,c),前i个物品,背包容量C,最优解 
int v[N];//价值
int w[N];//重量

int main()
{
    int n,c;
    cin>>n>>c;
    for(int i=1;i<=n;i++)
        cin>>w[i]>>v[i];
    
    // for(int j=1;j<=c;j++)
    //     f[1][j]=j<w[1]?0:v[1];
    
    for(int i=1;i<=n;i++){
        for(int j=1;j<=c;j++){
            if(w[i]>j){
                f[i][j]=f[i-1][j];
            }else{
                f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i]);
            }
        }
    }
    cout<<f[n][c]<<endl;
    
    return 0;
}

算法分析

O(n*c)

回溯法

问题解析:

0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。
在这里插入图片描述
有2n个叶结点,总节点2n+1-1,遍历子集树需计算时间O(2n)

在搜索解空间树时,只要其左儿子节点是一个可行节点(物品重量<剩余可承受的重量),搜索就进入左子树;只有当右子树中有可能含有最优解时,才进入右子树搜索,否则将右子树剪去。

约束函数

左儿子节点是否是一个可行节点:第i个物品重量 + 累计重量 < 总重量

限界函数

在实现时,由限界函数 Bound() 计算当前节点处的上界。在解空间树的当前扩展节点处,要进入右子树时计算上界Bound, 以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为左子树的上界与父节点的上界相同。

限界函数的思路是,按照贪心算法,计算装入剩余物品后能产生的最高价值r,如果r小于当前找到的最高价值bestv,那么右子树不可能产生更优解了,剪去右子树。

具体实现Bound() :将剩余物品依次按其单位价值降序排序,从单位价值最高的物品开始依次装入,直至装不下时,再装入物品一部分而装满背包(贪心)。

样例

例如:对于0-1背包问题的一个实例,n=4,c=7,v=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3, 2, 3.5, 4]。

以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1, 0.2, 1, 1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。

代码

用了模板类实现,实现过程都写在构造函数里了:
1、按照 价值/质量 对物品排序
2、回溯搜索
3、打印结果

#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;

//描述物品:重量,价值,价质比
template <class TypeWeight,class TypeValue>
class object{
public:
    int id;//编号
    TypeWeight w;//重量
    TypeValue v;//价值
    double ratio;//quality-price ratio

    object(){
        w=0;
        v=0;
        ratio=0;
    };
    object(TypeWeight w_,TypeValue v_){
        w=w_;
        v=v_;
        ratio=1.0*v_/w_;
    }

    //价质比降序排序
    bool operator<(object obj2){
        return ratio>obj2.ratio;
    }
};

//背包算法
template <class TypeWeight,class TypeValue>
class knap{
public:
    int N;//物品总数
    TypeWeight capacity;//total capacity

    object<TypeWeight,TypeValue> *obj;//物品的重量、价值、价值比

    TypeWeight *w;//weight array
    TypeValue *v;//value array

    int *path;//当前解
    int *bestpath;//最优解
    TypeWeight cur_weight;//current weight
    TypeValue cur_value;//current value
    TypeValue best_value;//optimal value,最大价值


    knap(int N_,TypeWeight capacity_,TypeWeight w_[],TypeValue v_[]);

    void backtrack(int idx);
    double bound(int idx);
    void output();//打印最优解、最优值
};

int main(){
    int n,capacity;
    cin>>n>>capacity;
    int *w=new int[n+1];
    int *v=new int[n+1];
    for(int i=1;i<=n;i++){
        cin>>v[i];
    }
    for(int i=1;i<=n;i++){
        cin>>w[i];
    }

    //回溯搜索01背包问题
    knap<int,int> k(n,capacity,w,v);

    return 0;
}


//---------构造函数----------------------
template <class TypeWeight,class TypeValue>
knap<TypeWeight,TypeValue>::knap(int N_,TypeWeight capacity_,TypeWeight w_[],TypeValue v_[]){
    N=N_;
    capacity=capacity_;

    //输入物品的重量、价值
    obj=new object<TypeWeight,TypeValue>[N_+1];
    for(int i=1;i<=N;i++){
        obj[i].id=i;
        obj[i].w=w_[i];
        obj[i].v=v_[i];
        obj[i].ratio=1.0*obj[i].v/obj[i].w;
    }
    //价质比降序排序
    sort(obj,obj+N+1);
    
    w=new TypeWeight[N_+1];
    v=new TypeValue[N_+1];
    for(int i=1;i<=N;i++){
        w[i]=obj[i-1].w;
        v[i]=obj[i-1].v;
    }
        
    //初始化解向量
    path=new int[N+1]();
    bestpath=new int[N+1]();

    //初始化
    cur_value=0;
    cur_weight=0;
    best_value=0;

    //回溯搜索
    backtrack(1);

    //打印结果
    output();
}

//---------回溯----------------------
template <class TypeWeight,class TypeValue>
void knap<TypeWeight,TypeValue>::backtrack(int idx){
    if(idx>N){//搜索结束
        for(int i=1;i<=N;i++){
            bestpath[i]=path[i];
        }
        best_value =cur_value;
        return;
    }
    if(cur_weight + w[idx]<=capacity){//进入左子树
        //选中第i个物品
        path[idx]=1;
        cur_weight+=w[idx];
        cur_value+=v[idx];
        backtrack(idx+1);

        //恢复
        cur_weight-=w[idx];
        cur_value-=v[idx];
        path[idx]=0;
    }
    if(bound(idx+1)>best_value)//进入右子树
        backtrack(idx+1);
}

//-----------上界-------------------------
template <class TypeWeight,class TypeValue>
double knap<TypeWeight,TypeValue>::bound(int idx){
    TypeWeight left_weight=capacity-cur_weight;//剩余重量

    double tmp_value = cur_value;
    //以物品单位价值重量比递减序,装入物品
    while(idx<=N && obj[idx].w<=left_weight){
        left_weight -= obj[idx].w;
        tmp_value += obj[idx].v;
        idx++;
    }
    //装满背包,贪心
    if(idx<=N){
        tmp_value += 1.0*left_weight*(obj[idx].v/obj[idx].w);//转double
    }
    
    return tmp_value;
}

//--------------打印结果--------------------
template <class TypeWeight,class TypeValue>
void knap<TypeWeight,TypeValue>::output(){
    cout<<endl<<"# 输入信息如下:"<<endl;
    cout<<"N = "<<N<<" , capacity = "<<capacity<<endl;
    cout<<"物品列表(id,价值,重量,价质比):"<<endl;
    for(int i=1;i<=N;i++){
        cout<<"<"<<obj[i-1].id<<","<<obj[i-1].v<<","<<obj[i-1].w<<","<<obj[i-1].ratio<<">"<<"\t";
        if(i%5==0)
            cout<<endl;
    }
    cout<<endl;

    cout<<endl<<"# 输出信息如下:"<<endl;
    cout<<"最大容量 = "<<capacity<<"时,最大价值 = "<<best_value<<endl;
    cout<<"得到最大价值时的选择如下(id,是否选择):"<<endl;
    for(int i=1;i<=N;i++){
        cout<<"("<<obj[i-1].id<<","<<bestpath[i]<<")\t";
        if(i%5==0)
            cout<<endl;
    }
    cout<<endl;
}

运行结果:

4 7
9 10 7 4
3 5 2 1

# 输入信息如下:
N = 4 , capacity = 7
物品列表(id,价值,重量,价质比):
<4,4,1,4>       <3,7,2,3.5>     <1,9,3,3>       <2,10,5,2>

# 输出信息如下:
最大容量 = 7时,最大价值 = 20
得到最大价值时的选择如下(id,是否选择):
(4,1)   (3,1)   (1,1)   (2,0)

算法分析

计算上界需要O(n)时间,在最坏情况下有O(2n ) 个右儿子节点需要计算上界,故解0-1背包问题的回溯算法的计算时间为O(n* 2n)。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值