基于darknet框架对自己的数据进行标注及训练流程(内含如何批量测试自己数据)

基于darknet框架的数据标注及训练流程

本文标注训练数据所使用的环境为Ubuntu20.04,CUDA 11.0, OpenCV 3.2, 训练则是在服务器上进行的。
主要使用的工具包括
开源标注工具Yolo_mark:

开源标注工具网址
红绿灯模型训练darknet框架:
darknet网址
具体实现如下:

标注

首先clone Yolo_mark工具到本地后,
标注过程:

  1. 将所需标注图片*.jpg文件添加到Yolo_mark相对路径:x64/Release/data/img目录下;
  2. x64/Release/data/obj.data文件下更改classes数量;
  3. x64/Release/data/obj.names文件中加入类别名称,每一行一个;
    同时支持OPenCV2.x及OpenCV3.x
    将上述所需信息更改后,便可在命令行中执行:
cmake.
make 
 ./linux_mark.sh

Yolo_mark标注过程中,可以通过数字键选择类别;
键盘左右箭头选择前后照片;
h:开启help提示;
c:清除标记;
m:显示坐标;
p:拷贝上一张图片的标记结果;(一般标注连续帧图片时可采用,比较省事)
r:删除所选标注框;
ESC:退出标注。

训练过程

训练数据

在标注完数据后,生成训练数据后,可进行模型训练。

  1. 首先clone darknet: darknet
  2. config文件及脚本文件在build\darknet\x64\data文件中,具体可参考如何训练自己的数据
  3. 下载预训练权重,此处所给为darknet53.conv.74下载地址
  4. run:
./darknet detector train data/obj.data cfg/my_yolov3.cfg darknet53.conv.74 -dont_show

模型训练结束后,可在backup文件夹中找到训练所得的权重.weights文件。
验证模型
run:

./darknet detector test data/obj.data cfg/my_test.cfg  backup/yourweights

另附批量检测图片并存储到指定目录方式:

  1. 用下面代码替换src文件夹下detector.c文件中的test_detector函数(可更改输出文件夹名,此处为result_img):
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
    float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers)
{
   
    list *options = read_data_cfg(datacfg);
    char *name_list = option_find_str(options, "names", "data/names.list");
    int names_size = 0;
    char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
 
    image **alphabet = load_alphabet();
    network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
    if (weightfile) {
   
        load_weights(&net, weightfile);
    }
    net.benchmark_layers = benchmark_layers;
    fuse_conv_batchnorm(net);
    calculate_binary_weights(net);
    if (net.layers[net.n - 1].classes != names_size) {
   
        printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
            name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
        if (net.layers[net.n - 1].classes > names_size) getchar();
    }
    srand(2222222);
    char buff[256];
    char *input = buff;
    char *json_buf = NULL;
    int json_image_id = 0;
    FILE* json_file = NULL;
    if (outfile) {
   
        json_file = fopen(outfile, "wb");
        if(!json_file) {
   
          error("fopen failed");
        }
        char *tmp = "[\n";
        fwrite(tmp, sizeof(char), strlen(tmp), json_file);
    }
    int j;
    float nms = .45;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值