基于darknet框架的数据标注及训练流程
本文标注训练数据所使用的环境为Ubuntu20.04,CUDA 11.0, OpenCV 3.2, 训练则是在服务器上进行的。
主要使用的工具包括
开源标注工具Yolo_mark:
开源标注工具网址
红绿灯模型训练darknet框架:
darknet网址
具体实现如下:
标注
首先clone Yolo_mark工具到本地后,
标注过程:
- 将所需标注图片*.jpg文件添加到Yolo_mark相对路径:
x64/Release/data/img
目录下; - 在
x64/Release/data/obj.data
文件下更改classes数量; - 在
x64/Release/data/obj.names
文件中加入类别名称,每一行一个;
同时支持OPenCV2.x及OpenCV3.x
将上述所需信息更改后,便可在命令行中执行:
cmake.
make
./linux_mark.sh
Yolo_mark标注过程中,可以通过数字键选择类别;
键盘左右箭头选择前后照片;
h:开启help提示;
c:清除标记;
m:显示坐标;
p:拷贝上一张图片的标记结果;(一般标注连续帧图片时可采用,比较省事)
r:删除所选标注框;
ESC:退出标注。
训练过程
训练数据
在标注完数据后,生成训练数据后,可进行模型训练。
- 首先clone darknet: darknet
- config文件及脚本文件在
build\darknet\x64\data
文件中,具体可参考如何训练自己的数据 - 下载预训练权重,此处所给为darknet53.conv.74下载地址
- run:
./darknet detector train data/obj.data cfg/my_yolov3.cfg darknet53.conv.74 -dont_show
模型训练结束后,可在backup文件夹中找到训练所得的权重.weights文件。
验证模型
run:
./darknet detector test data/obj.data cfg/my_test.cfg backup/yourweights
另附批量检测图片并存储到指定目录方式:
- 用下面代码替换src文件夹下detector.c文件中的test_detector函数(可更改输出文件夹名,此处为result_img):
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers)
{
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
int names_size = 0;
char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
image **alphabet = load_alphabet();
network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
if (weightfile) {
load_weights(&net, weightfile);
}
net.benchmark_layers = benchmark_layers;
fuse_conv_batchnorm(net);
calculate_binary_weights(net);
if (net.layers[net.n - 1].classes != names_size) {
printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
if (net.layers[net.n - 1].classes > names_size) getchar();
}
srand(2222222);
char buff[256];
char *input = buff;
char *json_buf = NULL;
int json_image_id = 0;
FILE* json_file = NULL;
if (outfile) {
json_file = fopen(outfile, "wb");
if(!json_file) {
error("fopen failed");
}
char *tmp = "[\n";
fwrite(tmp, sizeof(char), strlen(tmp), json_file);
}
int j;
float nms = .45;