datawhale-动手学数据分析task02

#加载数据train.csv
train = pd.read_csv('train.csv')

2 第二章:数据清洗及特征处理
我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章我们将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的亚子。

2.1 缺失值观察与处理
我们拿到的数据经常会有很多缺失值,比如我们可以看到Cabin列存在NaN,那其他列还有没有缺失值,这些缺失值要怎么处理呢

2.1.1 任务一:缺失值观察
(1) 请查看每个特征缺失值个数
(2) 请查看Age, Cabin, Embarked列的数据

#写入代码
train.isnull().sum()

PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
#写入代码
train[['Age','Cabin','Embarked']].head()
train.loc[:,['Age','Cabin','Embarked']].head(2)

2.1.2 任务二:对缺失值进行处理
(1)处理缺失值一般有几种思路

(2) 请尝试对Age列的数据的缺失值进行处理

(3) 请尝试使用不同的方法直接对整张表的缺失值进行处理

#处理缺失值的一般思路:

(1)删除缺失值

train.shape  # (891, 12)
train.dropna().shape
#写入代码
train.fillna(0).shape  # 用0填充

fillna()用法举例

df = pd.DataFrame([[np.nan, 2, np.nan, 0],
                    [3, 4, np.nan, 1],
                    [np.nan, np.nan, np.nan, 5],
                    [np.nan, 3, np.nan, 4]],
                   columns=list('ABCD'))
df
A	B	C	D
0	NaN	2.0	NaN	0
1	3.0	4.0	NaN	1
2	NaN	NaN	NaN	5
3	NaN	3.0	NaN	4
 df.fillna(0)
1
A	B	C	D
0	0.0	2.0	0.0	0
1	3.0	4.0	0.0	1
2	0.0	0.0	0.0	5
3	0.0	3.0	0.0	4
df.fillna(method='ffill')  # 前向填充

A	B	C	D
0	NaN	2.0	NaN	0
1	3.0	4.0	NaN	1
2	3.0	4.0	NaN	5
3	3.0	3.0	NaN	4
df.fillna(method='bfill')

A	B	C	D
0	3.0	2.0	NaN	0
1	3.0	4.0	NaN	1
2	NaN	3.0	NaN	5
3	NaN	3.0	NaN	4
values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
df.fillna(value=values)

A	B	C	D
0	0.0	2.0	2.0	0
1	3.0	4.0	2.0	1
2	0.0	1.0	2.0	5
3	0.0	3.0	2.0	4
df.fillna(value=values, limit=1)

A	B	C	D
0	0.0	2.0	2.0	0
1	3.0	4.0	NaN	1
2	NaN	1.0	NaN	5
3	NaN	3.0	NaN	4
train['Age'].fillna(int(train['Age'].mean()))  # 使用均值填充
1
0      22.0
1      38.0
2      26.0
3      35.0
4      35.0
       ... 
886    27.0
887    19.0
888    29.0
889    26.0
890    32.0
Name: Age, Length: 891, dtype: float64

【思考1】dropna和fillna有哪些参数,分别如何使用呢?

dropna用法举例
df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
                   "toy": [np.nan, 'Batmobile', 'Bullwhip'],
                   "born": [pd.NaT, pd.Timestamp("1940-04-25"),
                            pd.NaT]})
df

name	toy	born
0	Alfred	NaN	NaT
1	Batman	Batmobile	1940-04-25
2	Catwoman	Bullwhip	NaT

Drop the rows where at least one element is missing.

df.dropna()  # 删除有缺失值的行
name	toy	born
1	Batman	Batmobile	1940-04-25
 # Drop the columns where at least one element is missing.
df.dropna(axis='columns')  # 删除有缺失值的列
name
0	Alfred
1	Batman
2	Catwoman

Drop the rows where all elements are missing.

df.append(pd.DataFrame({'name':[np.nan],'toy':[np.nan],'born':[np.nan]}))

name	toy	born
0	Alfred	NaN	NaT
1	Batman	Batmobile	1940-04-25
2	Catwoman	Bullwhip	NaT
0	NaN	NaN	NaT
df.dropna(how='all')  # 删除全为缺失值的行

name	toy	born
0	Alfred	NaN	NaT
1	Batman	Batmobile	1940-04-25
2	Catwoman	Bullwhip	NaT

Keep only the rows with at least 2 non-NA values.

df.dropna(thresh=2)  #删除缺失值个数大于2的行

name	toy	born
1	Batman	Batmobile	1940-04-25
2	Catwoman	Bullwhip	NaT

define in which columns to look for missing values.

df.dropna(subset=['name', 'born'])
name	toy	born
1	Batman	Batmobile	1940-04-25
df.dropna(inplace=False)
df
name	toy	born
0	Alfred	NaN	NaT
1	Batman	Batmobile	1940-04-25
2	Catwoman	Bullwhip	NaT

Keep the DataFrame with valid entries in the same variable.

df.dropna(inplace=True)
df

name toy born
1 Batman Batmobile 1940-04-25
【思考2】检索空缺值用np.nan要比用None好,这是为什么?

数值列读取数据后,空缺值的数据类型为float64所以用None一般索引不到,比较的时候最好用np.nan
【参考】https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
【参考】https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html

2.2 重复值观察与处理
由于这样那样的原因,数据中会不会存在重复值呢,如果存在要怎样处理呢

2.2.1 任务一:请查看数据中的重复值
train[train.duplicated()]
1
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
2.2.2 任务二:对重复值进行处理
(1)重复值有哪些处理方式呢?

(2)处理我们数据的重复值

删除重复值

train.drop_duplicates().head(2)

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
2.2.3 任务三:将前面清洗的数据保存为csv格式
#写入代码
train.to_csv(‘train_clear.csv’)

2.3 特征观察与处理
我们对特征进行一下观察,可以把特征大概分为两大类:

数值型特征:Survived ,Pclass, Age ,SibSp, Parch, Fare,其中Survived, Pclass为离散型数值特征,Age,SibSp, Parch, Fare为连续型数值特征
文本型特征:Name, Sex, Cabin,Embarked, Ticket,其中Sex, Cabin, Embarked, Ticket为类别型文本特征,数值型特征一般可以直接用于模型的训练,【但有时候为了模型的稳定性及鲁棒性会对连续变量进行离散化】。文本型特征往往需要转换成数值型特征才能用于建模分析。
2.3.1 任务一:对年龄进行分箱(离散化)处理
(1) 分箱操作是什么?

分箱操作是:先把数据分成几个小区间,然后每个区间的数据拥有相同的label值
(2) 将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示

train[‘AgeBand’] = pd.cut(train[‘Age’],5,labels=[‘1’,‘2’,‘3’,‘4’,‘5’])
train.head(2)

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked AgeBand
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S 2
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C 3
(3) 将连续变量Age划分为[0,5) [5,15) [15,30) [30,50) [50,80)五个年龄段,并分别用类别变量12345表示

train[‘AgeBand’] = pd.cut(train[‘Age’],[0,5,15,30,50,80],labels=[‘1’,‘2’,‘3’,‘4’,‘5’])
train.head(2)

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked AgeBand
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S 3
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C 4
(4) 将连续变量Age按10% 30% 50 70% 90%五个年龄段,并用分类变量12345表示

train[‘AgeBand’] = pd.qcut(train[‘Age’],[0,0.1,0.3,0.5,0.7,0.9]
,labels = [‘1’,‘2’,‘3’,‘4’,‘5’])

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked AgeBand
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S 2
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C 5
(5) 将上面的获得的数据分别进行保存,保存为csv格式

【参考】https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html

【参考】https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html

2.3.2 任务二:对文本变量进行转换
(1) 查看文本变量名及种类

#写入代码
train.info()

Name,Sex,Ticket,Cabin,Embarked为文本变量

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 891 entries, 0 to 890
Data columns (total 13 columns):

Column Non-Null Count Dtype


0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
12 AgeBand 650 non-null category
dtypes: category(1), float64(2), int64(5), object(5)
memory usage: 84.7+ KB

train[‘Sex’].value_counts()
train[‘Cabin’].value_counts()
train[‘Embarked’].value_counts()

S 644
C 168
Q 77
Name: Embarked, dtype: int64

train[‘Sex’].unique()
train[‘Cabin’].unique()
train[‘Embarked’].unique()

array([‘S’, ‘C’, ‘Q’, nan], dtype=object)

train[‘Sex’].nunique()
train[‘Cabin’].nunique()
train[‘Embarked’].nunique()

(2) 将文本变量Sex, Cabin ,Embarked用数值变量12345表示

#方法一: replace
train[‘Sex_num’] = train[‘Sex’].replace([‘male’,‘female’],[1,2])
train[[‘Sex’,‘Sex_num’]].head(2)

Sex Sex_num
0 male 1
1 female 2
#方法二: map
train[‘Sex_num’] = train[‘Sex’].map({‘male’: 1, ‘female’: 2})
train[[‘Sex’,‘Sex_num’]].head(2)

Sex Sex_num
0 male 1
1 female 2
#方法三: 使用sklearn.preprocessing的LabelEncoder
from sklearn.preprocessing import LabelEncoder
lbl = LabelEncoder()

label_dict = dict(zip(train[‘Cabin’].unique(), range(train[‘Cabin’].nunique())))

train[“Cabin_labelEncode”] = train[‘Cabin’].map(label_dict)

train[“Cabin_labelEncode”] = lbl.fit_transform(train[‘Cabin’].astype(str))
train[[‘Cabin’,“Cabin_labelEncode”]].head(3)

Cabin Cabin_labelEncode
0 NaN 147
1 C85 81
2 NaN 147
(3) 将文本变量Sex, Cabin, Embarked用one-hot编码表示

x = pd.get_dummies(train[‘Sex’], prefix=‘Sex’)
train = pd.concat([train, x], axis=1)

train.head(2)

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked AgeBand Sex_num Cabin_labelEncode Sex_female Sex_male Sex_female Sex_male
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S 2 1 147 0 1 0 1
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C 5 2 81 1 0 1 0
2.3.3 任务三:从纯文本Name特征里提取出Titles的特征(所谓的Titles就是Mr,Miss,Mrs等)
#写入代码
Titles=[]
for name in list(train[‘Name’]):
if ‘Mr’ in name:
Titles.append(‘Mr’)
elif ‘Mrs’ in name:
Titles.append(‘Mrs’)
elif ‘Miss’ in name:
Titles.append(‘Miss’)
else:
Titles.append(np.nan)
Title

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Datawhale数据分析课程是一门专门教授数据分析的课程。在这门课程中,生将习各种数据处理和分析的技巧,包括数据的载入、基本操作、可视化展示等。在第一章的习中,生主要习了如何载入数据以及如何查看数据的基本信息,例如平均值、标准差、最大最小值,还习了数据的相加和删减等基本操作,这些都为后面进行数据分析打下了基础。此外,数据可视化也是数据分析过程中非常重要的一部分。通过绘图展示数据,可以帮助人们更直观地理解数据,从而得出更准确的结论。良好的数据可视化往往需要一些技巧,比如可以使用matplotlib和seaborn等库来进行可视化操作。例如,在任务六中,使用seaborn库的kdeplot函数对泰坦尼克号数据集中不同年龄的人生存与死亡人数分布情况进行了可视化展示。此外,Pandas库中的stack()和unstack()方法也是数据分析中常用的工具,用于数据的重构、聚合与运算。通过使用这些方法,可以对数据进行更灵活的处理和分析。例如,在任务一中,通过习教材《Python for Data Analysis》和进行相关的搜索,可以了解到GroupBy机制在数据分析中的应用。总之,Datawhale数据分析课程提供了丰富的知识和技巧,帮助生掌握数据分析的基本原理和实践技能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Datawhale数据分析课程01](https://blog.csdn.net/m0_71038676/article/details/124809826)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Datawhale数据分析课程第二章](https://blog.csdn.net/miaochangq/article/details/108077004)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值