第十周项目3

/*
* Copyright (c) 2016 烟台大学计算机学院
* All rights reserved.
* 文件名称: Cpp1.cpp
* 作者: 王鹏
* 完成日期: 2016年12月8日



* 问题描述: 计算二叉树节点个数; 输出所有叶子节点; 求二叉树b的叶子节点个数; 设计一个算法Level(b,x,h),返回二叉链b中data值为x的节点的层数;判断二叉树是否相似。

  * 输入描述: 无

* 输出描述: 二叉树节点个数;所有叶子节点;叶子节点个数;b中data值为x的节点的层数;二叉树是否相似。

*/

头文件:

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED


#define MaxSize 100
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树
void PreOrder(BTNode *b);
void InOrder(BTNode *b);
void PostOrder(BTNode *b);
int Nodes(BTNode *b);
void DispLeaf(BTNode *b);
void DispLeaf1(BTNode *b);
int LeafNodes(BTNode *b);
int Level(BTNode *b,ElemType x,int h);
int Like(BTNode *b1,BTNode *b2);
#endif // BTREE_H_INCLUDED

源文件:

#include <stdio.h>
#include <malloc.h>
#include "btree.h"


void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
void PreOrder(BTNode *b)        //先序遍历的递归算法
{
    if (b!=NULL)
    {
        printf("%c ",b->data);  //访问根节点
        PreOrder(b->lchild);    //递归访问左子树
        PreOrder(b->rchild);    //递归访问右子树
    }
}


void InOrder(BTNode *b)         //中序遍历的递归算法
{
    if (b!=NULL)
    {
        InOrder(b->lchild);     //递归访问左子树
        printf("%c ",b->data);  //访问根节点
        InOrder(b->rchild);     //递归访问右子树
    }
}


void PostOrder(BTNode *b)       //后序遍历的递归算法
{
    if (b!=NULL)
    {
        PostOrder(b->lchild);   //递归访问左子树
        PostOrder(b->rchild);   //递归访问右子树
        printf("%c ",b->data);  //访问根节点
    }
}


int Nodes(BTNode *b)
{
    if (b==NULL)
        return 0;
    else
        return Nodes(b->lchild)+Nodes(b->rchild)+1;
}
void DispLeaf(BTNode *b)
{
    if (b!=NULL)
    {
        if (b->lchild==NULL && b->rchild==NULL)
            printf("%c ",b->data);
        else
        {
            DispLeaf(b->lchild);
            DispLeaf(b->rchild);
        }
    }
}
int LeafNodes(BTNode *b)    //求二叉树b的叶子节点个数
{
    int num1,num2;
    if (b==NULL)
        return 0;
    else if (b->lchild==NULL && b->rchild==NULL)
        return 1;
    else
    {
        num1=LeafNodes(b->lchild);
        num2=LeafNodes(b->rchild);
        return (num1+num2);
    }
}
int Level(BTNode *b,ElemType x,int h)
{
    int l;
    if (b==NULL)
        return 0;
    else if (b->data==x)
        return h;
    else
    {
        l=Level(b->lchild,x,h+1);
        if (l==0)
            return Level(b->rchild,x,h+1);
        else
            return l;
    }
}
int Like(BTNode *b1,BTNode *b2)
{
    int like1,like2;
    if (b1==NULL && b2==NULL)
        return 1;
    else if (b1==NULL || b2==NULL)
        return 0;
    else
    {
        like1=Like(b1->lchild,b2->lchild);
        like2=Like(b1->rchild,b2->rchild);
        return (like1 & like2);
    }
}

main函数:

#include <stdio.h>
#include "btree.h"


int main()
{
    BTNode *b1, *b2, *b3;
    CreateBTNode(b1,"B(D,E(H(J,K(L,M(,N)))))");
    CreateBTNode(b2,"A(B(D(,G)),C(E,F))");
    CreateBTNode(b3,"u(v(w(,x)),y(z,p))");
    if(Like(b1, b2))
        printf("b1和b2相似\n");
    else
        printf("b1和b2不相似\n");
    if(Like(b2, b3))
        printf("b2和b3相似\n");
    else
        printf("b2和b3不相似\n");
    DestroyBTNode(b1);
    DestroyBTNode(b2);
    DestroyBTNode(b3);
    return 0;
}






心得体会:通过这5个问题,我更加深刻的理解二叉树的相关内容,对递归调用更加熟悉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值