国人“配位化学论文工厂”杰作!通讯作者邮箱“666”现象!

本周投稿推荐

SCI&EI

• 1区计算机类,3.5-4.0(1个月录用)

• CCF推荐,1区-Top(3天初审)

EI

• 各领域沾边均可(2天录用)

知网(CNKI)、谷歌学术

• 7天录用-检索(百发百中,包检索)

SSCI

• 1区,2.0-3.0(1个月录用)

期刊资讯

图片

2021 年 12 月,一篇评论指出,大量配位化学()论文似乎遵循同一模板编写,可能出自一个高产的 “配位聚合物论文工厂”。这些论文大量引用了 J. Li 和 J.-T. Li 的工作,显示出 MOFs 的广泛应用和特性。同时,通讯作者的电子邮件地址格式一致,可能由外部承包商统一处理。

图片

注:配位化学是研究金属离子与配体通过配位键形成配合物的科学领域,具有广泛的应用。它在生物化学、工业催化、材料科学和分析化学中都发挥着重要作用,为科学研究和实际应用提供理论和方法支持。

This is one of a large number of coordination-chemistry papers that appear to have all been written according to a template. They seem to be just part of the output of a prolific coordinate-polymer papermill(配位化学论文论文工厂).

这是大量配位化学论文中的一篇,这些论文似乎都是根据模板写的。它们似乎只是多产的坐标聚合物造纸厂产量的一部分(配位化学论文论文工厂).

All draw on three papers by J. Li and J.-T. Li to illustrate the broad range of applications and properties of MOFs.

所有这些都引用了J. Li和J.-T. Li的三篇论文来说明MOF的广泛应用和性能。

Li, J.; Ji, X. H.; Li, J. T. Two New Inorganic Anions Directed Zn(II)-Tetrazole Frameworks: Syntheses, Structures and Photoluminescent Properties. J. Mol. Struct. 2017, 1147, 22–25.

Li, J.; Li, J. T. A Luminescent Porous Metal–Organic Framework with Lewis Basic Pyridyl Sites as a fluorescent Chemosensor for TNP Detection. Inorg. Chem. Commun. 2018, 89, 51–54.

Li, J. T.; Li, J.; Song, L. M.; Ji, X. H. Microporous Metal–Organic Framework with 1D Helical Chain Building Units: Synthesis, Structure and Gas Sorption Properties. Inorg. Chem. 2017, 83, 88-91

The cluster is sometimes accompanied by less relevant references and clusters of references - notably, a quartet of "Bovine Indigestion" papers. Frequently co-occuring papers also include

图片

图片

图片

The vast majority of email identities for corresponding authors were formed by taking an underscore-separated name and appending '666' or '66'. I am advised that these are auspicious numbers with positive associations. So one possibility is that the authors all decided independently to generate email accounts with this format. The alternative is that some outside contractor handled the task of negotiating with journals (generating these disposable accounts in the process) - perhaps also the task of writing the manuscripts, using a single Bibliography file to save time.

通讯作者的绝大多数电子邮件身份都是通过使用下划线分隔的名称并附加“666”或“66”而形成的。据我所知,这些是吉祥的数字,具有积极的关联。因此,一种可能性是,作者都独立决定使用这种格式生成电子邮件帐户。另一种选择是,一些外部承包商处理了与期刊谈判的任务(在此过程中生成这些可支配账户)——也许还有写手稿的任务,使用单个参考文献文件来节省时间。


• 本文素材来源:公众号pubpeer

• 文中仅代表作者观点,转载仅出于传播更多资讯之目的。若侵犯了您的合法权益,敬请告知我们更正或删除

更多科研选刊资讯,关注公众号【Unionpub学术】不迷路~

### LightGBM 参数详解 #### 主要参数概述 LightGBM 的主要参数可以分为几大类:通用参数、数据相关参数、目标函数参数和学习控制参数。这些参数共同决定了模型的行为和性能。 - **num_leaves**: 控制树的最大叶子数,默认值为 31。增加此数值可以使模型更复杂,但也可能导致过拟合[^1]。 - **max_depth**: 设置树的最大深度,默认情况下不设置最大深度。通常与 `num_leaves` 配合使用来防止过拟合。 - **learning_rate (eta)**: 学习率,默认值为 0.1。较小的学习率意味着需要更多的迭代次数才能达到相同的训练效果,但能获得更好的泛化能力。 - **n_estimators**: 树的数量,默认值为 100。更多数量的树可能会提高准确性,同时也增加了计算成本。 - **objective**: 定义学习任务的目标函数,常见的选项包括二分类 (`binary`) 和多分类 (`multiclass`) 等。 ```python import lightgbm as lgb params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': {'l2', 'auc'}, 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9 } ``` #### 自定义评估函数 feval 为了实现更加灵活的评价标准,在 Python API 中可以通过传递额外的关键字参数 `feval` 来指定自定义的评估函数。该函数接收真实标签 y_true 和预测概率 p_pred,并返回名称、分数及是否越大越好三个部分组成的元组。 ```python def custom_metric(y_true, y_pred): """Custom evaluation metric.""" score = some_custom_scoring_function(y_true, y_pred) return 'custom_score', score, True # 或者 False 如果越低越好 bst = lgb.train(params, train_data, valid_sets=[validation_data], feval=custom_metric) ``` #### 性能优化技巧 针对不同的应用场景,调整上述提到的核心超参能够有效提升模型的表现: - 对于大规模稀疏特征的数据集,适当减少 `min_child_samples` 可以帮助构建更深更复杂的树结构; - 当面临类别不平衡问题时,考虑引入权重机制或修改损失函数中的正负样本比例因子; - 利用交叉验证技术寻找最优组合,比如通过 GridSearchCV 或 RandomizedSearchCV 进行网格搜索/随机搜索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值