机器学习_LGB自定义huber loss函数

很多时候为了达到更好的训练效果我们需要改变损失函数,以加速数据的拟合。

一、huber函数的近似函数

众所周知我们rmse会对异常值的损失关注度特别高,mae对异常会没有那么敏感。将两者进行结合就可以更加关注大部分的样本的损失,减少关注异常值,在一定程度上提升模型的泛化能力。
h u b e r l o s s = { 1 2 ( y t r u e − y p r e d ) 2           i f    ∣ y t r u e − y p r e d ∣ < δ δ ∣ y t r u e − y p r e d ∣ − 1 2 δ 2    i f    ∣ y t r u e − y p r e d ∣ > = δ huber_loss = \left\{\begin{matrix} \frac{1}{2}(y_{true} - y_{pred})^2 \ \ \ \ \ \ \ \ \ if\ \ |y_{true} - y_{pred}| < \delta \\ \delta|y_{true} - y_{pred}|-\frac{1}{2}\delta^2 \ \ if\ \ |y_{true} - y_{pred}| >= \delta \end{matrix}\right. huberloss={21(ytrueypred)2         if  ytrueypred<δδytrueypred21δ2  if  ytrueypred>=δ

但是在gbdt模型中,需要运用一阶导与二阶导的比值来结算树节点的拆分增益。mse不具有二阶导。所以我们需要寻找近似可导函数来替代。
P s e u d o _ h u b e r _ l o s s = δ 2 ( 1 + ( y ^ − y δ ) 2 + 1 ) Pseudo\_huber\_loss= \delta ^2(\sqrt{1 + (\frac{\hat{y} - y}{\delta})^2} + 1) Pseudo_huber_loss=δ2(1+(δy^y)2 +1)
一阶导:
g = δ 2 x 1 + ( x δ ) 2 ;    x = y ^ − y g = \delta ^2\frac{x}{\sqrt{1 + (\frac{x}{\delta})^2}};\ \ x=\hat{y} - y g=δ21+(δx)2 x;  x=y^y
二阶导:
h = δ 2 1 ( 1 + ( x δ ) 2 ) 3 2 h = \delta ^2\frac{1}{(1 + (\frac{x}{\delta})^2)^{\frac{3}{2}}} h=δ2(1+(δx)2)231

二、boston数据集实战

2.1 数据加载

import lightgbm as lgb
from sklearn.datasets import load_boston
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np

bst_dt = load_boston()
bst_df = pd.DataFrame(bst_dt.data, columns = bst_dt.feature_names)
bst_df['target'] = bst_dt.target
x_tr, x_te, y_tr, y_te = train_test_split(bst_df.drop('target', axis=1), bst_df['target'], test_size=0.2, random_state=42)

2.2 sklearn接口lgb简单拟合


lgb_params = {
    'objective' : 'regression',
    'num_leaves' : 30,
    'max_depth': 6,
    'metric': 'rmse',
    'bagging_fraction':0.9,
    'feature_fraction': 0.8,
    'n_jobs': -1 ,
    'n_estimators': 100,
    'subsample_for_bin': 500
}

lgb_model = lgb.LGBMRegressor(**lgb_params)
lgb_model.fit(x_tr, y_tr, eval_set=[(x_tr, y_tr)], verbose=10)
y_pred = lgb_model.predict(x_te)
mae_o = mean_absolute_error(y_te, y_pred)

自定义huber loss

def huber_objective(y_true, y_pred):
    error = y_pred - y_true
    delta = 8
    scale = 1 + (error / delta) ** 2
    scale_sqrt = np.sqrt(scale)
    g = delta * delta / scale * error
    h = delta * delta / scale / scale_sqrt
    return g, h


lgb_params.update({'objective': huber_objective})
print(lgb_params)
lgb_model = lgb.LGBMRegressor(**lgb_params)
lgb_model.fit(x_tr, y_tr, eval_set=[(x_tr, y_tr)], verbose=10)
y_pred = lgb_model.predict(x_te)
mae_huber = mean_absolute_error(y_te, y_pred)
mae_o, mae_huber

结果简单分析

仅仅从rmse上看,很显然,huber loss的损失会更大。我们进一步观察一下拟合差值
的分布情况。

"""
- rmse
[10]    training's rmse: 4.78619
[20]    training's rmse: 3.35349
[30]    training's rmse: 2.84163
[40]    training's rmse: 2.56263
[50]    training's rmse: 2.35089
[60]    training's rmse: 2.20306
[70]    training's rmse: 2.06908
[80]    training's rmse: 1.95886
[90]    training's rmse: 1.86569
[100]   training's rmse: 1.79135
- huber
[10]    training's rmse: 5.49376
[20]    training's rmse: 3.54926
[30]    training's rmse: 3.07389
[40]    training's rmse: 2.89136
[50]    training's rmse: 2.73511
[60]    training's rmse: 2.61101
[70]    training's rmse: 2.50242
[80]    training's rmse: 2.42138
[90]    training's rmse: 2.35478
[100]   training's rmse: 2.30335
(2.116972786370626, 2.0635595381991485)

"""

从差值中,我们可以看出huber loss 对较为集中的值拟合较好,会忽略部分异常值。从target的分布看确实存在着小部分的异常值。用huber loss拟合的模型会具有更佳的泛化能力。
在这里插入图片描述

import matplotlib.pyplot as plt
import seaborn as sns
sns.distplot(bst_df['target'])
plt.show()

"""
rmse loss
>>> (y_te-y_pred).map(int).value_counts()
 0     33
 1     16
-1     16
 2     11
-2      9
 4      5
 3      3
-3      3
-6      1
-5      1
 18     1
-12     1
 7      1
 5      1
# huber loss
>>> (y_te-y_pred).map(int).value_counts()
 0     37
-1     18
 1     10
-2      9
 2      8
 3      7
-3      4
-5      2
 4      2
 23     1
-10     1
 7      1
 6      1
 5      1
"""

参考

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
lightGBM是一个高效的梯度提升框架,用于解决许多机器学习中的问题,例如分类,回归和排序。如果您想要测试lightGBM,可以按照以下步骤操作: 1. 安装lightGBM模块。可以通过pip install lightgbm命令来安装。 2. 准备数据集。您需要准备一个数据集,并将其划分为训练集和测试集。 3. 加载数据集。使用pandas或numpy等工具将数据集加载到内存中。 4. 建立模型。使用lightGBM框架建立一个模型,并设置参数。 5. 训练模型。将训练集输入到模型中,并使用fit方法进行训练。 6. 测试模型。将测试集输入到模型中,并使用predict方法进行预测。 7. 评估模型。使用sklearn或其他工具评估模型的性能。 下面是一个简单的示例代码: ``` import lightgbm as lgb import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据集 data = pd.read_csv('data.csv') X = data.drop('target', axis=1) y = data['target'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 建立模型 params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'binary_logloss', 'num_leaves': 31, 'learning_rate': 0.05, } model = lgb.LGBMClassifier(**params) # 训练模型 model.fit(X_train, y_train) # 测试模型 y_pred = model.predict(X_test) # 评估模型 acc = accuracy_score(y_test, y_pred) print('Accuracy:', acc) ``` 注意,这只是一个简单的示例,您可以根据自己的数据集和问题进行更改和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Scc_hy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值