RC Ec Eb Ubm变化的影响
u c e m i n > U c e s , 欠 压 u_{cemin}>U_{ces},欠压 ucemin>Uces,欠压
u c e m i n = U c e s , 临 界 u_{cemin}=U_{ces},临界 ucemin=Uces,临界
u c e m i n < U c e s , 过 压 u_{cemin}<U_{ces},过压 ucemin<Uces,过压
u c e m i n = E c − U c m = E c − α 1 I c m a x R c u_{cemin}=E_c-U_{cm}=E_c-\alpha_1I_{cmax}R_c ucemin=Ec−Ucm=Ec−α1IcmaxRc
所以放大器的工作状态取决于 E c 、 E b 、 U b m 、 R c E_c、E_b、U_{bm}、R_c Ec、Eb、Ubm、Rc
R c 的 影 响 R_c的影响 Rc的影响—负载特性
前提: E c E b U b m E_c~E_b~U_{bm} Ec Eb Ubm一定
研究对象: 集 电 极 电 流 、 U c m P o η 集电极电流、U_{cm}~P_o~\eta 集电极电流、Ucm Po η
上图中部作出的是 Q A 3 A 3 ′ ( 过 压 ) 、 Q A 1 ( 欠 压 ) 、 Q A 2 ( 临 界 ) QA_3A_3'(过压)、QA_1(欠压)、QA_2(临界) QA3A3′(过压)、QA1(欠压)、QA2(临界)
Q A 1 QA_1 QA1:集电极负载电阻较小, U c m U_{cm} Ucm较小,集电极电流是余弦脉冲。
R c R_c Rc增加,动特性负载线斜率减小, U c m U_{cm} Ucm增大,由欠压到临界。此时电流波形仍为余弦脉冲,幅值比欠压时较小。当 R c R_c Rc继续增大时,动态负载线与饱和线相交,此后电流沿饱和线下降到 A 3 ′ A_3' A3′点,电流波形顶端下凸。
由是得到负载特性曲线:
电流电压与等效负载电阻关系(上左图):
欠 压 时
R C ↑ − − − − I c m a x , θ 略 ↓ R_C\uparrow----I_{cmax},\theta略\downarrow RC↑−−−−Icmax,θ略↓
(原因是B点(起始导通点)上篇中算得是[ E c − U c m c o s θ , 0 E_c-U_{cm}cos\theta,0 Ec−Ucmcosθ,0]),而Q点[ E c , − g ( U j + E b ) E_c,-g(U_j+E_b) Ec,−g(Uj+Eb)]不动的,而斜率变小了,B左移,cos(theta)自然稍微大了点,就是theta略微减小.)
(而 I c m a x I_{cmax} Icmax减小从上上图直接就看出来了,理论分析也可以,原因就是输出特性曲线放大区仍然稍微向上倾斜,动特性曲线扁了,交点左移了,横坐标自然就下降)
I c m a x , θ 略 ↓ − − − − I c 0 , I c 1 m ↓ I_{cmax},\theta略\downarrow----I_{c0},I_{c1m}\downarrow Icmax,θ略↓−−−−Ic0,Ic1m↓
(这是显然的。)
I c 0 , I c 1 m ↓ − − − − U c m ↑ I_{c0},I_{c1m}\downarrow----U_{cm}\uparrow Ic0,Ic1m↓−−−−Ucm↑
( U c m = R c I c 1 m , 后 者 略 有 减 小 , 那 U c m 几 乎 与 R c 成 正 比 增 加 U_{cm}=R_cI_{c1m},后者略有减小,那U_{cm}几乎与R_c成正比增加 Ucm=RcIc1m,后者略有减小,那Ucm几乎与Rc成正比增加)
临 界 后
I c I_c Ic波形下凸, I c m a x I_{cmax} Icmax下降较快,基波、一次谐波分量也很快下降,且Rc增大越多下降越迅速。而 U c m = R c I c 1 m U_{cm}=R_cI_{c1m} Ucm=RcIc1m,一下一上不好判断,但按理想即使在饱和线上Rc增大对大电流的利用也应该提高,所以 U c m U_{cm} Ucm略有提升。
这些整合在一起画出上图左的效果。
功率效率与Rc的关系(上图右):
晶体管输出功率P0:
欠 压 时, P o = 1 2 I c 1 m 2 R c P_o=\frac{1}{2}I_{c1m}^2R_c Po=21Ic1m2Rc平方项只是略有减小,故Po随Rc的增加而增大。
过 压 时, P o = U c m 2 2 R c P_o=\frac{U_{cm}^2}{2R_c} Po=2Rc