树莓派下对摄像头的调用https://blog.csdn.net/Wangguang_/article/details/89850615
树莓派点亮LEDhttps://blog.csdn.net/Wangguang_/article/details/90258604
接下来,我们将使用python+opencv实现对移动物体的检测
程序功能:摄像头程序识别到移动的物体之后,树莓派连接的LED闪烁,屏幕中显示的摄像头界面出现绿色矩形框选物体移动部分
一、环境变量的配置
我们可以参照上一篇文章对我们的树莓派进行环境的配置
当我们将cv2的库安装之后,就可以实现对摄像头的操作
二、摄像头的连接
在此实验中,我使用的为usb摄像头
当我们连接摄像头之后,终端输入
ls /dev/video*
如果终端提示如下:
则表示摄像头连接成功
三、编码实现对移动物体的检测
使用python编写程序,实现对移动物体的检测,代码如下
#encoding=utf-8
import RPi.GPIO as GPIO
import cv2
import time
import os
GPIO.setmode(GPIO.BCM)
GPIO.setup(18,GPIO.OUT)
camera = cv2.VideoCapture(0) # 定义摄像头对象,其参数0表示第一个摄像头
if camera is None:
#如果摄像头打开失败,则输出提示信息
print('please connect the camera')
exit()
fps = 30 #帧率
pre_frame = None #总是取前一帧做为背景(不用考虑环境影响)
led = False
while True:
start = time.time()
# 读取视频流
res, cur_frame = camera.read()
if res != True:
break
end = time.time()
seconds = end - start
if seconds < 1.0/fps:
time.sleep(1.0/fps - seconds)
cv2.namedWindow('img',0);
#cv2.imshow('img', cur_frame)
#检测如何按下Q键,则退出程序
key = cv2.waitKey(30) & 0xff
if key == 27:
break
#转灰度图
gray_img = cv2.cvtColor(cur_frame, cv2.COLOR_BGR2GRAY)
#将图片缩放
gray_img = cv2.resize(gray_img, (500, 500))
# 用高斯滤波进行模糊处理
gray_img = cv2.GaussianBlur(gray_img, (21, 21), 0)
#如果没有背景图像就将当前帧当作背景图片
if pre_frame is None:
pre_frame = gray_img
else:
# absdiff把两幅图的差的绝对值输出到另一幅图上面来
img_delta = cv2.absdiff(pre_frame, gray_img)
#threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)
#阈值时应该被赋予的新的像素值,阈值方法)
thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
#膨胀图像
thresh = cv2.dilate(thresh, None, iterations=2)
# findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法)
# 该行代码可能有问题,是因为opencv版本问题,如果报错请将三个参数补全
# image, contours, hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
contours, hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
#灵敏度
if cv2.contourArea(c) < 1000:
continue
else:
#框选移动部分
(x,y,w,h) = cv2.boundingRect(c)
cv2.rectangle(cur_frame,(x,y),(x+w,y+h),(0,255,0),2)
print("something is moving!!!")
led = True
if led == True:
#LED闪烁
for i in range(30):
GPIO.output(18,GPIO.HIGH)
time.sleep(0.03)
GPIO.output(18,GPIO.LOW)
time.sleep(0.03)
GPIO.output(18,GPIO.LOW)
break
#显示
cv2.imshow('img', cur_frame)
pre_frame = gray_img
# release()释放摄像头
camera.release()
#destroyAllWindows()关闭所有图像窗口
cv2.destroyAllWindows()
我的树莓派终端不能显示中文,因此会出现乱码
Ubuntu下的运行结果如下
树莓派下执行结果如下:
此外,在检测物体移动的同时,添加了led闪烁以及框选移动部分的功能,led安装方法请移步之前的博客