树莓派摄像头检测运动物体

本文介绍了在树莓派上安装OpenCV并利用Python进行运动物体检测的方法,包括Python2和Python3环境的安装步骤。重点讲解了帧差法进行运动目标检测的基本原理和操作步骤,包括视频读取、灰度处理、高斯滤波、二值化、轮廓检测等关键技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、安装OpenCv

检测运动物体需要用到opencv函数库,里面有丰富而且强大的图片处理函数供我们使用。

1、在树莓派安装运行在Python2上的OpenCV

sudo apt-get install libopencv-dev
sudo apt-get install python-opencv

如果出现下图的结果,说明Python2环境下的OpenCV安装成功。
在这里插入图片描述

2、在树莓派安装运行在Python3上的OpenCV

安装对应的依赖包(注意倒数第三条命令中要安装四个-dev软件包):

sudo apt-get install build-essential git cmake pkg-config -y
sudo apt-get install libjpeg8-dev -y
sudo apt-get install libtiff5-dev -y
sudo apt-get install libjasper-dev -y
sudo apt-get install libpng12-dev -y

sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev -y

sudo apt-get install libgtk2.0-dev -y
sudo apt-get install libatlas-base-dev gfortran -y

OpenCV模块pip安装

sudo pip3 install opencv-python

测试
在终端输入 :python3
然后 :import cv2
如果安装成功,则import不会有问题
下面就可以输出OpenCv的版本号
使用 :print(cv2.version)
退出python用: exit()

二、运动目标检测

运动目标检测的本质是轮廓检测。常用的运动目标检测算法有帧差法、光流法、背景减除法。
1、帧差法
帧差法是运动目标检测中常见的方法之一。其基本原理非常简单,先计算前后两帧相减的像素差,利用固定闭值进行二值化处理,得到前景运动目标。如果目标没有运动,那么两帧相减的像素差为零;若目标有明显的运动,那么两帧相减的像素差大于闭值,二值化处理可得到视频帧中的运动目标位置。
2、光流法
光流法的优点在于无需对场景的背景建模,就能够检测到运动目标,因此在动态场景中经常利用光流法来检测运动目标。然而,光流法基于亮度守恒假设条件,在复杂自然场景中,由于遮挡性、多光源、透明性和噪声等原因,使得光流的可靠性估计较差,获取到的运动信息误差较大。
3、背景减除法
背景减除法是一种有效的运动对象检测算法,基本思想是利用背景的参数模型来近似背景图像的像素值,将当前帧与背景图像进行差分比较实现对运动区域的检测,其中区别较大的像素区域被认为是运动区域,而区别较小的像素区域被认为是背景区域。背景减除法必须要有背景图像,并且背景图像必须是随着光照或外部环境的变化而实时更新的,因此背景减除法的关键是背景建模及其更新。

我这里只具体介绍帧差法,其他请自行学习。
基本步骤
相邻帧相减------阈值处理------去除噪声(腐蚀滤波)------膨胀连通------查找轮廓------外接矩形
首先读取视频或摄像头

# 视频文件输入初始化
filename = "/home/pi/Desktop/python代码/MP4/video.mp4"
#camera = cv2.VideoCapture(filename)
#如果是摄像头的话
camera = cv2.VideoCapture(0) #0表示默认摄像头

如果要保存视频:

fourcc = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D'
谷歌翻译: 如果相机拍照而没有人注意到,它真的发生了吗?在本书中,我们将向您展示如何制作基于Raspberry Pi的相机系统,以便您可以捕获延时图像并通过WiFi查看,如果检测运动则触发相机,甚至可以执行基本面部认可作为机器学习方法的介绍。 拿一个Raspberry Pi并添加一个相机模块,你就有了一个可编程相机。添加一些软件,您就可以开始进行有趣的监视和自动对象识别工作。将Pi激活为WiFi节点,您可以远距离完成所有这些美妙的事物。 一个好的监控系统不仅仅是拍照。它还应该将这些图片转化为可操作的信息,从而增加您的知识。现在可以在软件中轻松完成,我们将向您展示如何操作。 本书汇集了一系列小技巧 - 设置Pi相机,将Pi广播作为WiFi设备,增加时间流逝和运动检测和人脸识别,并在其上粘贴电池组,以便它可以在任何地方运行 - 创建便携式间谍相机。我们在“Find the Pi”派对比赛,在我们的实验室中实施隐私尊重的安全性,以及炫耀面部识别等现代技术的过程中使用了这些装备。其他用途可能包括监控鹿和野生动物,检查您的邮箱到达邮件,以及捕获自然事件或交通模式的延时序列。 我们的第一个项目是创建一个便携式“SpyPi”摄像机设备,通过WiFi广播图像而无需网络 - 您只需登录它即可查看摄像机看到的内容。它非常适合“寻找相机”狩猎挑战或独立安全。 第二个项目将涉及设置一个延时摄像头,可以进行简单的运动检测 - 非常适合监控位置。该系统将包括一周后自动删除旧图像。 第三个项目是为您的SpyPi添加面部检测和面部识别功能。在此过程中,您将了解这些项目结束时安装的工具和软件,以便您可以超越本书并探索其他机器学习方法。 所以抓住一个Pi,一个SD卡,一个USB摄像头和一个USB电池组,让我们走吧!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值