论文笔记:OpenDialKG:Explainable Conversational Reasoning with Attention-based Walks over Knowledge Graph

一、动机

如何根据知识图谱在领域不可知的前提下保证对话系统的参与性和有效性是一个很重要的问题。基于此,作者将一段对话模拟为在知识图谱上的路径(可能是多条),以此使得对话系统具有可解释性。

对话示例如下所示:
在这里插入图片描述

二、方法

该模型是根据(1)当前对话(2)以前的所有对话(3)当前对话中的实体,预测回答语句的实体,然后开放式对话系统便可以以该实体为核心组织对应的回复。以下是模型概略图:

在这里插入图片描述

三、模型

1、输入编码: 模型首先有3种类型的输入

  • (1) 实体表示:编码当前轮对话涉及到的实体,通过KG Embedding编码为实体向量作为输入,KG Embedding模型可表示为:
    在这里插入图片描述
    最大似然学习法: 使得有效三元组的概率最大。
  • (2) 句子表示:编码当前轮的对话,采用Bi-LSTM进行编码。
  • (3) 对话表示:编码以前所有的对话日志,采用双层注意力机制的Bi-LSTM进行编码。
  • (4) 融合表示: 最后以上三个表示分别得到一个向量,在这里再使用一个Attention,以得到最终的表示向量 x ˉ \mathbf{\bar{x}} xˉ

2、图解码器:
图编码器根据输入 x ˉ \mathbf{\bar{x}} xˉ解码目标实体,目标函数为:
在这里插入图片描述

  • (1) 第一项,Zeroshot Relevance Score: L f \mathcal{L}_f Lf定义为hinge rank loss
    在这里插入图片描述
    其中 y ^ \mathbf{\hat{y}} y^是负采样的目标实体。 y e ( i ) \mathbf{y}_e^{(i)} ye(i)即目标实体。本质上这一项希望编码出的 f ( x ˉ ) f(\bar{x}) f(xˉ)接近目标实体的Embedding向量。
  • (2) 第二项,KG Path Walker f f f由分类模块和Path Walker两个模块组成,其中后者是整个模型的核心,起着对搜索空间进行剪枝的作用,对应着大图中的第二个部分, 其本质上是一个使用LSTM生成Path的生成过程,不过对于每一步,首先使用一个attention过程,生成LSTM Cell当前步的输入 z t \mathbf{z}_t zt
    在这里插入图片描述
    其中 h t − 1 \mathbf{h}_{t-1} ht1 t − 1 t-1 t1步预测实体的Embedding向量 y e ( i ) \mathbf{y}_e^{(i)} ye(i)相关联,而 L w a l k \mathcal{L}_{walk} Lwalk定义为
    在这里插入图片描述
    即希望模型接近目标路径 y = { y e , y r } \mathbf{y}=\{\mathbf{y}_e, \mathbf{y}_r\} y={ye,yr}。 最后在预测时,我们可以通过下式生成 y e , t ( i ) y_{e, t}^{(i)} ye,t(i):
    在这里插入图片描述
    其中 V R , 1 ( y e , t − 1 ( i ) ) V_{R,1}(y^{(i)}_{e,t-1}) VR,1(ye,t1(i))指与以前所有的预测实体在KG中直接相连的实体所对应向量的集合。

四、实验结果

这里笔者只是本着了解任务和方法的目的来的,暂时就不详细抠实验了,以后有需要再补上。

五、总结

该论文任务属于开放式对话系统,因为笔者之前没有看过相关文章,个人觉得此文章还是很有亮点,其将一段情景对话对应到了知识图谱中的路径,对话过程具有可解释性,是个很不错的Idea。不过预测出实体如何生成回复似乎也是个问题,文章中没有提到,可能这属于另一个任务吧。总的来说,读了这篇文章还是有一定收获的,个人对知识图谱的应用又有了新的认识。

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AAAI 2020的教程“可解释人工智能”将重点介绍可解释人工智能的概念、方法和应用。可解释人工智能是指人工智能系统能够以一种可理解的方式解释其决策和行为的能力。该教程将涵盖可解释人工智能的基本原则和方法,包括规则推理、可视化技术、模型解释和对抗性机器学习等。 在教程中,我们将首先介绍可解释人工智能的背景和意义,解释为什么可解释性对于人工智能的发展至关重要。然后,我们将深入探讨可解释人工智能的基本概念和技术,例如局部解释和全局解释。我们还将介绍一些关键的可解释性方法,如LIME(局部诠释模型)和SHAP(SHapley Additive exPlanations),并解释它们的原理和应用场景。 此外,我们还将探讨可解释人工智能在各个领域的具体应用,包括医疗诊断、金融风险管理和智能驾驶等。我们将分享一些成功的案例和实践经验,探讨可解释人工智能在实际应用中的挑战和解决方案。最后,我们还将讨论未来可解释人工智能的发展趋势和挑战,展望可解释性在人工智能领域的重要性和前景。 通过参加该教程,学习者将能够全面了解可解释人工智能的概念、方法和应用,理解其在实际应用中的重要性,掌握一些关键的可解释性技术和工具,并对可解释人工智能的未来发展有一个清晰的认识。希望通过这次教程,能够为学习者提供一个全面而深入的可解释人工智能学习和交流平台。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值