最近调研了一下 对话推荐系统(Conversational Recommender System, CRS),包括CRS基础,最新进展,工业落地相关问题,潜在的研究点等等。
下面是CRS的定义和例子
CRS: A recommendation system that can elicit the dynamic preferences of users and take actions based on their current needs through real-time multiturn interactions.
核心:通过多轮对话逐步诱导出用户的偏好并推荐商品。
CRS看起来很美好,但是落地难度还是比较大。
NLU,NLG部分。人机对话就很难了,能针对商品推荐生成可控文本就更难了。
交互策略。什么时候问用户问题?什么时候推荐商品?实时反馈?
多个大模型NLP+Rec+RL的联合优化。尤其是RL,工业界真正可用跑起来的还不多。
实时性。聊天回复要快呀。
简单的试了下淘宝-迪卡侬-CRS,感觉还比较简陋。
调研PPT
