京东 | 对话推荐系统调研

本文调研了对话推荐系统(CRS),指出其通过多轮对话揭示用户偏好并推荐商品的核心特点。然而,落地难点包括NLU、NLG的技术挑战,交互策略设计,实时性需求以及大模型的联合优化。尽管存在如CRSLab等开源工具,但目前的实现仍处于早期阶段,需要进一步研究和改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近调研了一下 对话推荐系统(Conversational Recommender System, CRS),包括CRS基础,最新进展,工业落地相关问题,潜在的研究点等等。

下面是CRS的定义和例子

CRS: A recommendation system that can elicit the dynamic preferences of users and take actions based on their current needs through real-time multiturn interactions.

核心:通过多轮对话逐步诱导出用户的偏好并推荐商品。

CRS看起来很美好,但是落地难度还是比较大。

  • NLU,NLG部分。人机对话就很难了,能针对商品推荐生成可控文本就更难了。

  • 交互策略。什么时候问用户问题?什么时候推荐商品?实时反馈?

  • 多个大模型NLP+Rec+RL的联合优化。尤其是RL,工业界真正可用跑起来的还不多。

  • 实时性。聊天回复要快呀。

简单的试了下淘宝-迪卡侬-CRS,感觉还比较简陋。

调研PPT

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值