- 博客(447)
- 收藏
- 关注
原创 【2025CVPR】GleSAM:通过生成性潜在空间增强实现任意质量图像分割
摘要:本文针对SegmentAnythingModels(SAMs)在低质量图像上性能下降的问题,提出了GleSAM框架。该框架通过生成性潜在空间增强技术,利用预训练扩散模型重建高质量特征表示,显著提升了模型在退化图像上的分割鲁棒性。关键创新包括特征分布对齐技术、通道复制扩展方法和LoRA微调策略。实验结果表明,GleSAM在保持清晰图像性能的同时,有效提升了在模糊、噪声等退化图像上的分割精度。构建的LQSeg数据集为低质量图像分割研究提供了新基准。
2025-11-09 10:00:00
804
原创 【2025CVPR】TFCustom:基于时间感知频率特征引导的定制图像生成模型详解
本文提出TFCustom框架,一种无需微调的定制图像生成方法。该框架创新性地引入时间感知频率特征引导机制,通过同步噪声注入和多尺度特征提取实现高质量图像生成。关键创新包括时间感知频率细化模块(将参考图像分离为高低频特征)和奖励模型优化。实验表明,TFCustom在单主体和多主体生成任务中均达到SOTA性能,显著提升图像一致性,同时保持文本可控性。该方法为零样本定制生成提供了新思路,在保留细粒度细节方面表现出色。
2025-11-09 08:30:00
13
原创 液压泵故障转移诊断:动态仿真与改进域对抗神经网络的创新融合
摘要:本文提出一种基于动态仿真和改进域对抗神经网络(DS-IDANN)的液压泵智能故障诊断方法,解决标注数据稀缺和域偏移问题。该方法通过建立液压泵动力学模型生成仿真数据,并采用融合图卷积网络和最大熵优化的改进域对抗框架实现跨域知识迁移。实验表明,DS-IDANN在仅有4个真实标注样本情况下达到95.6%的平均诊断准确率,显著优于传统方法。该技术为工业设备智能运维提供了新思路,特别适用于故障数据获取困难的关键设备健康管理场景。
2025-11-08 16:05:49
823
原创 基于深度卷积与自注意力的自适应域适应方法:滚动轴承故障诊断
本文提出了一种新型深度迁移学习模型LRSADTLM,用于解决变工况下轴承故障诊断的挑战。该模型创新性地融合小波包变换、轻量残差网络和自注意力机制,构建了多尺度时频特征表示和深度融合网络。通过结合多核最大均值差异和域对抗神经网络的联合优化策略,有效实现了跨域特征对齐。实验验证表明,模型在多个轴承数据集上取得了95.28%-99.77%的优异诊断准确率,显著优于现有方法。该技术为工业设备智能运维提供了有效解决方案,特别适用于工况多变场景下的故障诊断需求。
2025-11-08 15:53:44
878
原创 [2025CVPR]Active Multimodal Distillation for Few-shot Action Recognition:基于主动推理的多模态知识蒸馏框架
本文提出AMFIR框架,通过主动模态选择、双向知识蒸馏和自适应推理融合解决少样本动作识别中的多模态融合问题。实验表明,该方法在Kinetics-400和SSv2等数据集上显著优于现有基线(1-shot准确率达82.8%和70.6%)。核心创新包括:1)ASI模块动态评估模态可靠性;2)AMD模块实现跨模态知识迁移;3)AMI模块自适应融合多模态特征。可视化分析证实了该框架在模态重要性评估和多模态融合上的有效性。未来将探索更多模态整合和跨数据集泛化能力。
2025-11-08 15:48:03
1914
原创 [2025CVPR-Vision Transformers方向]BHViT:二值化混合视觉Transformer详解
本文提出了一种二值化混合视觉Transformer架构(BHViT),旨在解决视觉Transformer在边缘设备部署中的效率问题。该方法通过三个关键创新实现了性能突破:(1)混合CNN-Transformer架构,前阶段使用多尺度分组空洞卷积处理高分辨率特征,后阶段采用改进的窗口注意力机制;(2)量化分解技术,通过组合多个二值注意力矩阵提升表示能力;(3)移位增强MLP和自适应正则化损失,有效缓解二值网络优化问题。实验表明,BHViT在ImageNet分类任务上相比纯二值化ViT提升超过20%,同时大幅降
2025-11-02 08:30:00
319
原创 [2025CVPR-Vision Transformers方向]ERUPT: Efficient Rendering with Unposed Patch Transformer 详解
本文提出ERUPT(高效无姿态块变换渲染)方法,通过创新的块查询机制和学习的潜在相机姿态,实现了仅需5张未姿态输入图像的高效新视角合成。核心创新包括:基于块的解码器降低64倍计算量(达600fps渲染速度);自适应姿态学习机制支持无姿态训练;混合注意力架构增强场景理解。实验表明,ERUPT在MSN数据集上PSNR达24.20,比传统方法快5倍,且仅需5%姿态标注即可接近全监督性能。该方法为真实场景的新视角合成提供了高效解决方案。
2025-11-02 08:00:00
23
原创 基于数字孪生的永磁同步电机早期匝间短路故障诊断方法
摘要: 本研究提出了一种基于数据驱动数字孪生模型的永磁同步电机早期匝间短路故障诊断方法。通过建立NARX网络数字孪生模型,仅需健康电机数据即可完成故障诊断,无需精确电机参数和故障数据。方法通过分析三相电流残差实现故障检测,能有效消除电机谐波干扰,在短路匝数比低至0.03时仍具有高灵敏度。实验验证表明,该方法在变速工况下也能准确识别故障相,相比传统谐波分析方法具有明显优势。核心代码实现了NARX网络建模、残差计算和实时诊断功能,为早期故障检测提供了有效解决方案。
2025-11-01 17:14:34
822
原创 基于融合数字孪生与多尺度特征提取的轴承故障模型详解
本文提出了一种结合数字孪生和多尺度特征提取的轴承故障诊断方法。通过构建4层数字孪生框架建立高保真动力学模型(误差<5%),并开发混合模型(1DCNN-SENet-2DSwinTransformer)进行多尺度特征提取。实验表明,该方法在测试集上达到98.9%的准确率,优于单一模型。开发的交互式诊断系统实现4.76秒快速响应,支持多维参数分析。未来将优化模型轻量化和泛化能力,推动工业应用。
2025-11-01 17:00:57
736
原创 【2025CVPR-域泛化方向】Link-based Contrastive Learning for One-Shot Unsupervised Domain Adaptation
本文提出了一种基于链接对比学习(LCL)的一样本无监督域适应(OSUDA)方法。针对源数据稀缺和域对齐困难的挑战,LCL通过原型对比学习(PC)从目标域学习判别性特征,利用域内链接对比学习(ILC)增强特征判别性,并采用跨域链接对比学习(CLC)实现精确语义对齐。实验表明,LCL在VisDA-2017等基准数据集上取得显著提升(最高23.97%),在监控人脸识别等真实场景中平均提升11.84%。该方法创新性地通过链接机制避免了阈值选择,具有强兼容性和鲁棒性。
2025-11-01 10:05:12
16
原创 [2025CVPR 异常检测方向]OODD:基于动态字典的测试时分布外检测方法详解
本文提出OODD,一种基于动态字典的测试时分布外(OOD)检测新方法。该方法通过信息性内点采样构建高质量ID字典,利用优先级队列动态管理OOD样本,并采用双稳定化机制确保检测稳定性。实验表明,OODD在CIFAR和ImageNet等基准上显著优于现有方法,如在CIFAR-100 FarOOD检测中将FPR95降低26%。该方法无需微调模型,计算效率高,为实时OOD检测提供了有效解决方案。核心创新包括动态字典管理、信息性采样和双稳定化机制。
2025-11-01 09:53:42
171
原创 基于多尺度特征融合的自注意力度量学习的小样本故障诊断
本文针对小样本条件下轴承故障诊断难题,提出了一种融合多尺度特征(MSFF)和自注意力机制(SA)的SAML-MSFF模型。该模型基于孪生网络架构,通过并行多尺度卷积提取多层次特征,并利用SA机制优化相似性度量。实验表明,在CWRU等数据集上,仅需每类10-30个样本即可实现90%以上准确率,跨负载条件下仍保持70%以上性能。消融实验验证了MSFF对特征提取的关键作用(提升6%)和SA对度量学习的优化效果(提升4%)。模型在实际工业数据中表现良好,为小样本故障诊断提供了有效解决方案。未来将结合迁移学习进一步提
2025-10-25 22:31:13
192
原创 用于小样本故障增量学习的多视图 Shapelet 原型网络
本文针对工业过程中少样本新故障诊断挑战,提出多视角形状原型网络(MSPN)解决少样本故障增量学习(FSFIL)问题。方法通过多视角形状子原型分类器构建可泛化特征空间,结合Transformer元校准模块优化新旧类特征区分性。在Tennessee Eastman和铝电解过程数据集上的实验表明,MSPN在准确率(84.90%)、抗遗忘性和时间效率上优于基线方法,且形状子提供直观故障解释。研究为工业故障诊断提供了可解释、高效的增量学习方案,未来可扩展至多变量数据和新类发现场景。
2025-10-25 22:24:57
50
原创 面向小样本蜂窝网络故障诊断的模型与知识互增强方法
本文提出鲁棒信念加权框架(RBWF)解决蜂窝网络故障诊断中的两大挑战:标注数据稀缺和领域知识利用不足。RBWF通过四阶段实现数据与知识的双向增强:(1)模式提取(PET)从无标签数据学习特征;(2)信念加权机制利用知识库修正模型伪标签;(3)用可靠预测更新知识库;(4)SMOTE过采样解决类别不平衡。实验表明,在仅3.75%标注数据下,RBWF准确率达97.68%,性能接近全量监督学习,显著优于基线方法。该框架通过创新的互增强机制,实现了从小样本和粗糙知识库出发的高性能故障诊断。
2025-10-23 23:55:53
43
原创 基于类内类间优化的元学习少样本故障诊断方法
本文提出了一种基于类内类间优化的元学习(MLIIO)少样本故障诊断方法。针对工业场景中故障样本稀缺的问题,MLIIO创新性地设计了类内聚合损失(IAL)和类间判别损失(IDL)两个互补组件,通过优化特征空间实现高效诊断。方法采用原型网络架构,在元学习框架下同时优化类内紧凑性和类间可分性。实验表明,MLIIO在CWRU轴承和铁路道岔等数据集上均优于现有方法,在3-way5-shot任务中准确率超90%,且具有强抗噪能力和跨工况适应性。该方法为数据稀缺条件下的工业设备智能诊断提供了有效解决方案。
2025-10-23 23:45:35
922
原创 基于自注意力动态采样的GNNs到KANs知识蒸馏:面向消费电子边缘部署的高效框架
本文提出了一种创新的自注意力动态采样蒸馏(SA-DSD)框架,首次实现了从图神经网络(GNNs)到Kolmogorov-ArnoldNetworks(KANs)的知识蒸馏。该框架通过改进的FR-KAN+学生模型(引入动态频率基、复数权重和相位偏移)和自注意力动态采样机制,有效解决了GNNs在边缘设备部署时的计算复杂度问题。实验表明,SA-DSD在六个基准数据集上平均准确率提升15.61%,参数量压缩16.96倍,推理时间减少55.75%,显著优于传统GNN到MLP的蒸馏方法。该技术为消费电子边缘设备提供了高
2025-10-17 08:30:00
1937
原创 【2025CVPR-密集检测】
本文提出TIDE(文本到图像与密集标注统一生成模型),创新性地实现仅通过文本输入同时生成水下图像及多类型密集标注(深度图、语义掩码)。核心贡献包括:1)首创统一生成框架,通过隐式布局共享机制(ILS)和时间自适应归一化(TAN)确保多模态输出一致性;2)构建14K真实数据四元组及5万样本合成数据集SynTIDE;3)实验表明模型在深度估计(SIlog指标提升14.7%)和语义分割(mIoU提升2.1%)任务中显著提升性能,并具备零样本生成能力。该研究为水下视觉任务提供了高效数据合成方案,论文代码已开源。
2025-10-17 08:30:00
159
原创 IEEE TRANSACTIONS 论文《MTSNN: 一种跨机器异构故障类别的少样本细粒度诊断框架》
本文提出了一种名为元传输脉冲神经网络(MTSNN)的跨机器少样本细粒度故障诊断框架,结合脉冲神经网络(SNN)与元学习技术,有效解决了传统方法对标注数据依赖大、跨机器泛化能力差、细粒度诊断不足等问题。MTSNN通过卷积脉冲神经网络提取特征,并创新性地设计了包含原型学习、元对比学习和熵信息最大化的损失函数,在多个真实机械数据集上验证了其优越性,在5-way5-shot任务中准确率达95.86%,较传统方法提升显著。该研究为工业设备智能诊断提供了新思路,未来将优化参数调优和实时部署。
2025-10-16 23:07:34
1139
原创 高压断路器故障诊断:基于注意力机制的少样本迁移学习(FSTL)方法详解
本文提出了一种创新的少样本迁移学习(FSTL)方法,结合注意力机制(1DACNN)和子域自适应技术,用于解决高压断路器在小样本条件下的故障诊断问题。该方法通过一维注意力CNN提取细粒度时间特征,并利用局部最大均值差异(LMMD)实现类别级子域对齐,有效解决了传统方法在样本不平衡时的性能下降问题。实验表明,FSTL在现场小样本(160个)条件下达到94.86%的准确率,较传统方法提升5-10个百分点。该方法为电力设备智能运维提供了高效可靠的技术方案,显著降低了对现场故障数据量的需求。
2025-10-16 22:56:07
98
原创 Adaptive Multi-prompt Contrastive Network for Few-shot Out-of-distribution Detection
本文提出自适应多提示对比网络(AMCN)来解决少样本OOD检测的关键挑战。针对样本稀缺性和类别多样性差异问题,AMCN创新性地结合三种自适应提示(LIPs、LFOPs、LAOPs)进行跨模态对比学习,并设计类自适应阈值和分布归一化机制来优化决策边界。实验表明,AMCN在多个基准数据集上显著优于现有方法,如在1-shot设置下将FPR95降低9.71%。该方法为安全关键领域的异常检测提供了新思路,有效解决了少样本场景下的OOD检测难题。
2025-10-10 08:30:00
55
原创 基于KAN融合的混合CNN-Transformer模型应用于皮肤癌分类
本研究提出一种混合CNN-Transformer架构结合卷积Kolmogorov-Arnold网络(CKAN)的皮肤病变分类方法。通过顺序和并行两种混合模型设计,有效融合CNN的局部特征提取能力与Transformer的全局建模优势。在HAM10000等四个公开数据集上的实验表明,该方法准确率最高达97.83%,显著优于单一模型。创新性地引入CKAN特征融合模块,提升了模型表达能力,为医学图像分类提供了新思路,具有较好的泛化能力和临床应用价值。
2025-10-09 18:59:05
230
原创 基于时频的长期时序KAN预测模型:TFKAN: Time-Frequency KAN for Long-Term Time Series Forecasting
本文提出TFKAN,一种基于KAN网络的时频双分支时间序列预测架构。创新性在于首次将KAN直接应用于频域处理,通过FFT/IFFT转换实现时域与频域信息的互补融合,并设计维度调整策略优化频域表示。实验表明,TFKAN在多个数据集上优于现有方法,尤其擅长捕捉周期性模式,同时保持较低计算开销。该方法为时间序列预测提供了新的频域建模思路,未来可进一步优化效率并扩展应用场景。
2025-10-09 18:54:44
204
原创 [2025CVPR-域泛化方向]:通过改进损失景观实现更好的域泛化
摘要:本文提出自反馈训练(SFT)框架解决机器学习中的域泛化问题,通过优化损失景观一致性提升模型在未知域的泛化能力。SFT采用迭代式两阶段设计:反馈阶段检测域间损失景观差异并生成反馈信号,改进阶段利用这些信号优化景观改进器。实验表明,SFT在多个基准数据集上优于现有方法,平均提升1.5%-3.8%准确率。理论分析证实损失景观一致性具有可转移性,为域泛化提供了新视角。该方法兼容不同骨干网络,在保持训练效率的同时显著提升性能。
2025-09-23 20:25:01
222
原创 【2025CVPR-域泛化方向】PEER Pressure:单源域泛化的模型间正则化方法解析
论文《PEERPressure》提出PEER框架解决单源域泛化问题,通过任务模型和代理模型的双模型结构,结合熵正则化和参数平均机制,有效缓解了数据增强导致的性能波动和特征失真。实验表明,该方法在多个基准数据集上达到SOTA性能,显著提升模型泛化能力,为域泛化研究提供了新思路。
2025-09-23 20:17:49
919
原创 基于特征级跨域对齐和型对比学习的小样本故障诊断模型
本文提出DWPCN方法解决轴承故障诊断中的小样本和跨域分布差异问题。通过特征级跨域对齐模块(FCA)结合条件域判别器和样本感知加权,抑制异常值影响;原型对比学习模块(PCL)则增强类内一致性和类间判别性。在CWRU和HUST数据集上的实验表明,DWPCN在10-way-5-shot任务中准确率达99.88%,显著优于现有方法,有效解决了负迁移问题,为工业故障诊断提供了可行方案。
2025-09-17 08:00:00
908
原创 基于多级任务知识补充网络的小样本条件下的多故障诊断模型
本文提出了一种多级任务知识补充网络(MTKS)用于解决固定翼无人机故障诊断中的小样本和多任务挑战。MTKS通过公共知识池(PKP)共享故障部件诊断(FCD)和故障程度诊断(FSD)的公共知识,采用自适应知识补充策略(筛选矩阵和注意力机制)实现知识动态共享,并引入动态加权平均优化多任务学习。实验表明,在80个训练样本的小样本场景下,MTKS平均准确率达73.79%,显著优于单任务和传统多任务学习方法,且满足实时性要求。消融实验验证了各模块的有效性。该方法为无人机故障诊断提供了新思路,特别适用于数据稀缺场景。
2025-09-17 08:00:00
1641
原创 基于一种域差异引导的对比特征学习的小样本故障诊断方法
本文提出了一种基于域差异引导对比学习的少样本变工况故障诊断方法(DD-CFL)。针对工业场景中故障样本稀缺且工况多变的两大挑战,该方法创新性地利用工况变化导致的自然分布差异构建对比样本对,避免了人工数据增强的局限性。通过正样本对(同故障不同工况)和负样本对(不同故障)的特征对比学习,提取对工况变化鲁棒的特征。实验表明,该方法在变转速、变负载和强噪声条件下均优于现有方法,显著提高了少样本条件下的诊断准确率,为工业设备智能维护提供了新思路。
2025-09-16 21:52:07
200
原创 基于属性描述转移的高压断路器零样本智能诊断模型
本文提出基于属性描述转移的高压断路器零样本智能诊断模型(ADT-ZSID),解决故障数据稀缺和新故障诊断难题。该模型通过构建故障属性描述矩阵(FAD),利用多源信号特征训练属性分类器,实现从已知故障向未知故障的知识转移。实验表明,在完全没有未知故障样本的情况下,模型平均诊断准确率达96.93%,显著优于现有方法。该方法创新性地采用属性转移机制,为电力设备在数据稀缺条件下的智能诊断提供了有效解决方案。
2025-09-16 21:29:17
76
原创 基于Transformer-卷积神经网络和度量元学习的高压断路器小样本机械故障诊断
摘要:本文提出一种基于TCNN混合架构和度量元学习的高压断路器小样本故障诊断方法(TML)。针对样本稀缺(仅需10样本)和跨设备泛化难题,模型通过ResNet-Transformer混合特征提取器实现局部/全局特征互补,结合原型校正策略和近邻边界损失函数优化分类性能。实验表明,该方案在5-10样本条件下准确率达88.17%-95.78%,跨设备诊断准确率93.89%,较传统方法提升显著。研究为电力设备少样本诊断提供了新思路,具备现场部署价值。
2025-09-16 21:11:28
319
原创 一种基于因果干预的少样本学习的故障诊断模型
本文提出CIRNet,一种融合元学习与因果干预的少样本故障诊断框架。针对传统方法易学习伪相关特征的问题,CIRNet通过构建结构因果模型,采用类级和特征级双调整策略消除先验知识干扰。实验在多个轴承/齿轮数据集上验证其有效性,在跨组件任务中准确率最高达93.41%,特征可视化显示更好的类可分性。相比现有方法,CIRNet显著提升了模型泛化能力和可解释性。
2025-09-14 19:15:56
780
原创 基于少样本支持的一类学习的增量式生成对抗诊断:
摘要: 论文提出IGAD框架,解决工业故障诊断中异常检测与故障分类的难题。该方法仅需大量正常样本和极少量故障样本,通过Bi-GAN提取潜在特征,并结合FSEOCL实现增量学习,逐步识别新故障类型。实验表明,IGAD在CWRU轴承和工业机器人数据集上准确率达96%-99%,且具有鲁棒性和实时性。核心贡献在于结合生成对抗网络与少样本学习,为小样本工业故障诊断提供新思路。代码开源,框架可扩展至其他领域。
2025-09-14 19:10:38
1111
原创 一种基于特征增强的少样本轴承表面缺陷图像分类方法Feature Enhancement-Based Few-Shot Bearing Surface Defect Image
本文提出一种基于特征增强的少样本轴承表面缺陷分类方法,通过改进原型网络框架,结合局部特征提取和相似特征注意力机制,有效解决工业场景中缺陷样本稀缺问题。方法包含特征嵌入网络、全局-局部特征融合模块(GLF)、相似特征注意力模块(SFA)和自适应度量网络,在miniImageNet和自制轴承数据集上分别达到76%和88%的分类准确率,显著优于传统方法。消融实验验证了各模块的有效性,注意力可视化显示其能精准定位缺陷特征。该方法为工业缺陷检测提供了数据高效的解决方案,未来将优化特征嵌入网络和原型表示方法。
2025-09-10 21:10:52
950
原创 PANet: Pluralistic Attention Network for Few-Shot Image Classification一种基于注意力机制的少样本图片分类模型
摘要: PANet提出了一种基于多元化注意力机制的少样本学习方法,通过局部编码内部注意力(LEIA)和全局编码互惠注意力(GERA)模块协同增强特征表示。LEIA结合空间与通道注意力提取局部特征,GERA利用样本间相关性优化全局特征,并设计双中心化(DC)余弦相似度提升度量鲁棒性。实验在miniImageNet等四个数据集上达到SOTA性能(如5-way1-shot准确率69.60%),消融实验验证各模块有效性。可视化显示PANet能精准定位目标区域并生成紧凑特征分布,为少样本学习提供了新思路。
2025-09-10 20:09:21
162
原创 基于ConvFormer的双条件域自适应方法的故障诊断模型
本文提出了一种基于ConvFormer网络和双条件域适应策略(CFBDAM)的轴承故障跨机诊断方法。针对传统方法在特征信息不足和可迁移性差的问题,CFBDAM通过全局-局部特征提取器(GLFE)和交叉注意力特征融合(CAFF)模块捕获丰富故障特征,并利用双条件约束增强特征可迁移性。实验表明,该方法在三个轴承数据集上平均准确率达86.40%,优于11种基线方法,同时通过轻量化设计实现了高效工业部署。消融实验验证了各组件的重要性,特征可视化显示该方法能有效实现域不变和类别可判别特征学习。
2025-09-08 22:02:36
883
原创 LSAGNet:用于图像超分辨率的轻量级自注意力引导网络
本文提出轻量级自注意力引导网络LSAGNet,用于高效单图像超分辨率。针对现有方法局部连续性缺失或全局建模不足的问题,设计残差混合变换器组结合动态局部注意力(DLA)和全局自注意力(GSA),DLA通过动态卷积核增强局部特征,GSA利用软阈值优化全局相关性。采用重参数化卷积减少计算量,结合频域损失提升重建质量。实验表明,该模型仅553K参数量,在Urban100(×4)达到32.92dB PSNR,计算量较同类降低38%,实现了性能与效率的平衡。
2025-09-08 21:38:31
66
原创 用于多变量时间序列预测的多尺度模型A multiscale model for multivariate time series forecasting
本文提出MultiPatchFormer模型,针对多变量时间序列预测中多尺度特征提取不足和跨通道相关性建模不充分的问题进行创新。模型采用多尺度嵌入共享参数捕捉时序模式,通过双阶段编码器(时序+通道)建模变量交互,并设计多步解码器缓解长时预测误差。在7个真实数据集上的实验表明,该模型82%的MSE和86%的MAE指标排名前二,尤其在高维数据和长序列场景表现优异,较基线模型最高降低15%误差,同时训练效率提升40%。研究为Transformer在时序预测中的应用提供了新思路。
2025-09-07 20:59:04
724
原创 基于新型KAN网络的时间序列异常检测:KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
本研究提出KAN-AD时间序列异常检测方法,通过傅里叶级数替代B样条函数来建模平滑局部模式,避免传统方法对噪声数据的过拟合。方法包含三大创新:傅里叶级数优化、周期增强和差分策略,采用三阶段流程实现高效检测。实验表明,在多个数据集上F1平均提升15%,参数量仅274个,推理速度提升50%,且抗噪声能力突出。该方法为资源受限场景提供了高效解决方案。
2025-09-07 19:06:56
1029
原创 基于多级特征编码器用于声学信号故障检测模型
本文提出一种基于多级特征编码器(MLFE)的工业声学信号故障检测方法。针对传统方法泛化能力不足的问题,通过频率掩码降噪和多级特征提取(时域/频域/聚类特征)捕捉跨设备故障特征。实验表明,MLFE在MIMII数据集上显著优于现有方法,尤其在低信噪比条件下(6dB时MCC达97.03%)。关键创新包括高效频率掩码技术(O(N)复杂度)和特征融合机制,有效解决设备异构性问题。未来将优化聚类参数并扩展至多模态数据。
2025-09-06 16:59:43
445
原创 一种基于迁移学习的零样本故障诊断方法
本文提出一种基于迁移学习的零样本故障诊断方法,通过三个创新点解决现有局限:1)共享知识词典自动学习故障特征,减少人工标注依赖;2)多类空间投影模型为每类故障分配独立投影空间,优化特征提取;3)伪标签机制利用K-means聚类挖掘目标域数据的类内/类间结构信息。在TEP工业基准和真实钢铁热轧数据集上的实验表明,该方法平均诊断准确率分别达72.79%和0.7150,显著优于现有方法。特征可视化验证了多空间投影的有效性,算法在20次迭代后收敛。该方法为减少专家知识依赖、提升诊断精度提供了有效解决方案。
2025-09-06 16:53:12
980
2
原创 【2025ICCV-持续学习方向】基于PROL的持续学习模型
本文提出PROL,一种轻量级无重放的在线持续学习方案,通过冻结基础生成器和动态调整缩放/平移参数(仅16参数/类)实现高效学习。PROL采用单生成器+四模块架构,结合正交约束和联合损失函数,在CIFAR100等数据集上准确率最高提升76%,参数量仅0.213M,显著优于现有方法。该方案突破了传统方法依赖历史数据和计算效率低下的局限,为动态环境中的持续学习提供了新思路。
2025-09-04 05:00:00
815
基于Hive的大数据分析与智能分类推荐系统-多媒体作品集管理解决方案
2025-01-15
神经网络源码-GoogLeNet源码
2024-11-22
神经网络源码+AlexNet模型源码+人工智能
2024-11-22
人工智能KAN神经网络+python代码
2024-11-22
基于PyTorch的故障检测CNN模型训练与应用
2024-11-22
基于一维CNN和LSTM的融合网络用于时间序列数据的预测分类
2024-10-19
机器学习基于鸢尾花数据集的决策树与随机森林分类模型对比:特征工程、模型训练及性能评估
2025-04-28
医学领域基于CatBoost与贝叶斯优化的高原脑水肿风险预测模型研究:多模态数据挖掘与性能评估
2025-04-28
【软件工程、计算机专业】基于Java SSM的图书管理系统开发与实现:需求分析、架构设计及性能优化摘要
2025-04-28
【无人机识别技术】基于射频信号与改进视觉Transformer的无人机检测与识别系统设计
2025-04-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅