- 博客(267)
- 收藏
- 关注
原创 基于IDIG-GAN的小样本电机轴承故障诊断
文章摘要:针对工业轴承小样本故障诊断难题,本文提出IDIG-GAN模型:①采用梯度归一化技术(计算量降低40%)严格满足1-Lipschitz条件;②创新梯度间隙正则化机制(λ=100)平衡判别器对真实/生成样本的梯度差异;③嵌入自注意力模块增强时频特征提取。实验表明,在CWRU数据集上生成样本的MMD降低6.3%,故障识别准确率提升至95.5%(较基线+2.5%),尤其球故障识别率提升7.2%。该模型仅需每类60样本即可实现高效诊断,生成推理耗时<5ms,适用于实时工业监测场景。
2025-06-06 22:48:34
597
原创 AMFCNN-RKD:齿轮故障诊断的轻量级多传感器融合模型详解(python代码复现)
本文深入解析了基于注意力机制和多层融合的齿轮故障诊断方法,通过创新的知识蒸馏技术实现高精度轻量化模型,在强噪声环境下保持卓越性能。a)半齿断裂 (b)异物突起 (c)齿根裂纹 (d)缺齿 (e)齿面磨损 (f)均匀磨损。min∥教师关系ψ(ti,tj)−学生关系ψ(si,sj)∥。在同等轻量级模型中(WDCNN),准确率提升4.28%Fig.1 轻量级多传感器齿轮故障诊断模型框架。Fig.2 MFM模块结构。
2025-06-05 23:34:56
326
原创 MPNet:旋转机械轻量化故障诊断模型详解python代码复现
多分支空洞融合:σ(F2);σ(F3);σ(F4);σ(ga(X))]平衡局部细节与全局特征无降维注意力:自适应卷积核保持通道信息完整性金字塔残差学习:多尺度特征残差传递提升梯度流轻量级设计:参数量仅1.71M,比ResNet18减少85%
2025-06-05 23:11:06
207
原创 光伏功率预测新突破:TCN-ECANet-GRU混合模型详解与复现
通过指数增长的膨胀系数(1,2,4,8,16)扩大感受野,避免未来信息泄露。比LSTM参数少30%,训练速度提升20%,性能相当。其中C为通道数,k为卷积核大小(取最近奇数)TCN-ECANet-GRU 模型的框架。模型在波动剧烈的春季仍保持高精度跟踪能力。:DKASC光伏数据集。
2025-06-03 23:24:19
200
原创 基于人工原生动物优化的CNN-GRU风电功率预测模型(附Python/Matlab代码)
:极端天气场景下误差增大,后续可融合雷达气象数据。图示:风速对预测结果影响权重达75%,湿度仅8%30分钟内预测误差保持在3.7%以下。
2025-06-03 23:14:47
20
原创 小目标检测:YOLOV7改进之双坐标注意力(DCA)
一、研究背景针对玉米幼苗与杂草相似度高、田间环境复杂的问题,提出基于YOLOv7-tiny改进的轻量级检测模型DC-YOLO。通过双坐标注意力机制(DCA)、内容感知上采样(CARAFE)和解耦检测头三大创新,在保持轻量化的同时将mAP@0.5提升至95.7%,参数量仅5.2M,显著优于主流轻量模型。
2025-06-02 23:27:04
228
原创 YOLOV7改进之融合深浅下采样模块(DSD Module)和轻量特征融合模块(LFI Module)
:论文未开源代码,但结构清晰可自行实现。重点关注DSD模块的多分支拼接和LFI的双分支融合设计。图:SOD-YOLO(中) vs YOLOv7(左) vs TPH-YOLOv5(右),参数量降低17.89%,计算量减少20.25%,显著优于YOLOv7!针对无人机(UAV)图像中小目标检测的实时性与边缘部署难题,本文提出。图:DSD Module(右) vs YOLOv7下采样模块(左),在VisDrone数据集上实现。SOD-YOLO 模型结构图。
2025-06-02 23:09:30
412
原创 基于 PARE-YOLO 的多尺度注意力融合小目标检测模型
传统YOLO系列算法在此场景下表现欠佳,平均漏检率超过40%。PARE-YOLO应运而生,在VisDrone2019数据集上实现mAP@0.5提升5.9%,推理速度保持123FPS。PARE-YOLO 模型的网络架构。在无人机航拍场景中,目标检测面临着。
2025-05-25 19:53:50
75
原创 YOLOV8涨点技巧之DSS模块(一种轻量化火灾检测模型)
DSS-YOLO通过三大创新模块的有机结合,在保持YOLO系列实时性的基础上,实现了对小目标和遮挡目标的精准检测。实验证明其mAP50达到89.5%,同时模型体积减少3.3%,为边缘计算设备的部署提供了新的解决方案。该技术已成功应用于多个智慧园区项目,平均预警响应时间缩短至3.2秒,标志着计算机视觉在公共安全领域的重要突破。
2025-05-25 19:31:51
89
原创 YOLOV8涨点技巧之空间通道协作注意力(SCCA)-应用于自动驾驶领域
SCCA-YOLO通过创新的空间-通道协作注意力机制,在保持YOLO系列实时性优势的同时,显著提升了高速公路场景下的检测性能。实验表明该模型在自建数据集上的mAP@0.5达到84.4%,较基准模型提升0.7个百分点,同时通过Ghost模块实现33%的参数量压缩。相关代码已开源,为自动驾驶感知系统提供了新的技术选择。
2025-05-25 19:09:16
144
原创 基于多特征融合的TCN-GCN光伏电厂短期功率预测模型
异构特征融合:实现气象-设备-时间特征的联合建模动态权重分配:根据天气条件自动调整空间/时间特征贡献度轻量级拓扑学习:基于电气距离的自适应邻接矩阵构建多尺度感知:TCN覆盖5分钟到24小时的时间跨度。
2025-05-25 17:13:21
60
原创 基于多头注意力时间卷积网络(MATCN)的虚拟电厂短期功率预测模型
时空特征解耦:TCN负责时间模式,注意力捕捉空间关联动态门控机制:自适应调整两种特征的融合比例多尺度感知:膨胀卷积覆盖5分钟到24小时的时间跨度轻量化设计:参数量比传统Transformer减少52%
2025-05-25 14:54:00
165
原创 最新缺陷检测模型:EPSC-YOLO(YOLOV9改进)
本文介绍了EPSC-YOLO算法,一种针对工业缺陷检测的深度学习模型。该算法通过引入EMA多尺度注意力模块、PyConv金字塔卷积、CISBA混合注意力模块和Soft-NMS等创新技术,显著提升了在复杂背景、多尺度小目标及低对比度缺陷检测上的性能。实验结果表明,EPSC-YOLO在NEU-DET和GC10-DET数据集上的mAP@50和mAP@50:95指标均有显著提升,分别提高了2-2.4%和2.4-5.1%。此外,文章还详细解析了各核心模块的技术细节和代码实现,并展望了未来的研究方向,包括轻量化改进、融
2025-05-18 23:06:13
153
原创 小目标检测:自适应卷积和重构特征融合检测模型AAPW-YOLO(YOLOV8改进)
为此,作者提出AAPW-YOLO,通过三大创新实现参数减少30%的同时精度提升3.6%。图1:AAPW-YOLO整体架构,融合AKConv、ASFP2与Wise-IoU三大创新模块。(图6:左为YOLOv8n,右为AAPW-YOLO,红色表示高关注区域)图2:AKConv支持任意采样形状,图中展示5×5核的四种采样模式。(图3:ASFP2结构包含SSFF和TFE模块,新增P2检测层)其中n为核尺寸,Δpi为各采样点的偏移量。
2025-05-18 21:25:49
87
原创 最新最热门的特征提取方式:CVOCA光学高速复值卷积
传统电子卷积神经网络(CNN)需将复杂值分解为实部/虚部分别处理,导致计算效率低、能耗高。输入数据 X 通过IQ调制器分解为实部(cosωct)和虚部(sinωct),分别加载到奇偶波长组的光载波(图2b)。因超高带宽(>10 THz)、低延迟和低功耗成为理想替代方案,但现有光学神经网络(如全连接结构)难以处理高维复杂卷积运算。将 WR 和 WI 映射到微梳光源的奇偶波长通道(图2a),避免直接操控光相位。图像实部与虚部对比,b为传统CNN与光学CNN的对比,c为整个过程。图3a:合成波长编码。
2025-05-18 21:03:28
155
原创 小目标检测之改进的YOLOV11算法
MASF-YOLO通过多尺度特征聚合注意力增强自适应融合三大核心创新,显著提升了无人机视角下的小目标检测性能。
2025-05-07 15:36:11
413
原创 FBRT-YOLO:面向实时航空图像检测的更快更好的YOLO变体解析
信息互补机制:通过FCM实现空间-语义特征动态平衡多尺度感知:MKP单元扩展有效感受野至21×21结构精简:参数效率提升3倍以上。
2025-05-07 15:07:46
195
1
原创 Mamba+Attention+CNN 预测模型:破局长程依赖的计算机视觉新范式
最后,在中间层插入注意力模块,实现局部与全局特征的交互增强,从而完成对视觉任务的预测。这种架构使得模型在处理图像和视频任务时,既能关注细节,又能把握全局信息,有效提升了预测的准确性和效率。随着视频处理、遥感影像分析等复杂任务对长序列建模需求的激增,一种融合状态空间模型与选择性注意力的新型架构 ——它结合了 Mamba 的线性复杂度优势、Attention 的灵活特征聚焦能力以及 CNN 强大的局部特征提取能力,为视觉任务带来了全新的建模范式。
2025-05-04 11:37:25
211
原创 超级创新思路:基于CBAM-Transformer的强化学习时间序列预测模型(Python\matlab实现)
时空联合注意力:改进CBAM适应时序特征选择动态策略优化:将强化学习引入预测过程控制多任务适应性:统一框架处理不同物理场景轻量化设计:参数量比传统Transformer减少38%
2025-04-27 22:57:10
159
原创 CFIS-YOLO:面向边缘设备的木材缺陷检测轻量级网络解析
本文提出CFIS-YOLO模型。:融合多模态数据(红外、声波),拓展至其他材料检测领域。针对木材缺陷检测中的三大挑战:。
2025-04-21 22:25:29
238
原创 HyperDefect-YOLO:基于超图计算的工业缺陷检测算法解析
工业缺陷检测是保障产品质量的关键环节,但在复杂场景和多尺度缺陷下仍面临挑战。传统YOLO模型在捕捉高阶特征关联上存在不足。通过引入超图计算(HyperGraph Computation),提出了一系列创新模块,显著提升了缺陷检测性能。论文在HRIPCB、NEU-DET和自建MINILED数据集上验证了方法的有效性,代码已开源。HD-YOLO通过超图计算与多模块协同,显著提升了工业缺陷检测的精度与鲁棒性。其轻量化设计(仅9.3M参数)与高实时性(185 FPS)使其适用于多种工业场景。
2025-04-21 21:43:54
117
原创 可发1区的超级创新思路(python 、MATLAB实现):基于多尺度注意力TCN-KAN与小波变换的时间序列预测模型
多尺度小波-时序融合:通过小波分解显式建模不同频段的功率波动模式可解释KAN预测:利用Kolmogorov-Arnold定理提升模型物理可解释性非对称注意力:在特征融合阶段引入尺度间非对称注意力权重轻量化设计:TCN的扩张卷积参数效率较LSTM提升2.3倍本方案已在某100MW光伏电站部署应用,实现功率预测误差≤5%的产业级效果。添加天气雷达数据融合模块采用模型量化技术压缩至FP16精度集成在线学习机制适应组件老化。
2025-04-19 21:42:58
1101
原创 可发1区的超级创新思路(python 、MATLAB实现):基于区域注意力双通道MABMA的时间序列预测模型
首先声明,该模型为原创!原创!原创!且该思路还未有成果发表,感兴趣的小伙伴可以借鉴!应用领域:功率预测、故障诊断、流量预测等领域!
2025-04-19 21:05:33
517
原创 FA-YOLO:基于FMDS与AGMF的高效目标检测算法解析
FA-YOLO通过FMDS与AGMF模块,显著提升了多尺度目标的检测能力,尤其在小目标场景下表现突出。代码复现时需注意特征分块与动态权重的实现细节。未来可探索在轻量化部署或视频流检测中的应用。
2025-04-18 22:55:35
198
原创 SO-DETR:利用双域特征和知识蒸馏进行小目标检测
技术突破首次实现空间-频域特征在DETR框架中的高效融合扩展IoU机制使小目标召回率提升9.2%轻量版模型计算效率达47FPS(640×640输入)未来方向多模态特征融合(红外/可见光)动态查询分配机制3D小目标检测扩展SO-DETR为小目标检测提供了新的技术范式,其代码已在GitHub开源,期待在更多实际场景中验证其工程价值。
2025-04-17 16:15:06
127
原创 创新思路:于双分支多尺度特征融合的MBFN磁芯损失预测模型
首先声明:该思路在磁芯损失预测领域尚未有成果发表,感兴趣的小伙伴可以借鉴!首先声明:该思路在磁芯损失预测领域尚未有成果发表,感兴趣的小伙伴可以借鉴!
2025-04-17 15:48:39
293
原创 YOLO涨点技巧之分层扩展路径聚合网络 (HEPAN)
创新模块技术原理效果提升HEPAN双向跨层连接 + 残差增强mAP↑3.2%C2fDCB深度可分离卷积 + 重参数化计算量↓30%SCDown通道压缩 + 空间下采样参数量↓13.5%通过以上技术创新,SL-YOLO在无人机小目标检测领域实现了精度与效率的最佳平衡,为灾害救援、智慧农业等实际应用提供了可靠的技术支持。
2025-04-15 22:51:48
675
原创 基于动态注意力机制与双向融合的目标检测模型详解
动态注意力机制:首次在检测头中融合多维度注意力,实现小目标增强。双向加权特征融合:改进传统FPN的单向限制,提升遮挡目标识别。轻量化设计:在提升精度的同时降低计算量(GFLOPs减少11.9%)。该论文通过动态注意力与双向融合策略,在安全帽检测任务中实现了精度与效率的平衡,为工业场景下的实时安全监控提供了可靠解决方案。未来可结合多模态数据与自监督学习进一步提升鲁棒性。
2025-04-15 20:24:06
192
原创 Fab-ME: 基于视觉状态空间与注意力增强的织物缺陷检测框架详解
Fab-ME通过 状态空间建模与多尺度注意力的协同设计,在织物缺陷检测任务中实现了精度与速度的突破。其模块化设计易于迁移至其他工业检测场景,为智能制造提供了高效可靠的视觉解决方案。
2025-04-15 20:16:01
76
原创 论文精度:异常检测方法INP-Former(Exploring Intrinsic Normal Prototypes within a Single Image for Universal An)
在工业质检领域,无监督图像异常检测(AD)技术通过仅学习正常样本的模式,实现对异常区域的高效识别。传统方法(如PatchCore、RD4AD等)依赖于将测试图像与训练集中的正常原型进行比对。原型对齐难题:工业产品在外观、角度、位置上的天然差异导致测试图像与预存原型的几何对齐困难。例如,不同摆放角度的坚果会引入无效比对。多类别扩展性:现有方法通常需要为每个产品类别单独训练模型,难以应对产线中多品类混检的复杂场景。研究者们发现了一个关键现象:即使异常图像中,大部分区域仍然正常。
2025-04-14 23:44:45
351
原创 论文精度:双分支图Transformer网络:视频驱动的3D人体网格重建新突破
在智能机器人交互、虚拟现实、动作捕捉等领域,3D人体网格重建技术扮演着核心角色。通过从视频中恢复人体的三维姿态和表面形状,机器人可以准确感知人类动作意图,实现更自然的协作;影视制作中可生成高保真数字人动画;医疗领域可辅助运动康复分析。DGTR通过创新的双分支架构,在3D人体重建领域实现了准确性与流畅性的双重突破。其轻量化的设计使实时部署成为可能,为智能机器人、元宇宙等前沿领域提供了新的技术基座。随着后续研究的深入,这项技术有望推动人机交互进入新的发展阶段。
2025-04-14 23:30:38
249
原创 论文精度:基于多特征组合的机器学习海上风电功率预测模型
随着全球能源需求激增与环境问题加剧,海上风电已成为能源转型的重要方向。美国墨西哥湾等近海区域凭借稳定风力资源,成为海上风电开发的热点。本研究为海上风电预测提供了新的特征工程范式,未来将向实时动态预测、多机组协同优化等方向深入探索。1.2 机器学习预测模型演进。4.2.2 特征组合影响。
2025-04-13 22:23:39
1161
原创 论文精度:BoltzFormer:基于Boltzmann采样的动态稀疏注意力机制在小物体图像分析中的应用
在医学影像分析中,肺结节、肿瘤病灶等微小目标的检测与分割是核心任务,但这些目标往往仅占整幅图像的0.1%以下。其中温度参数τℓ=τ0/(1+ℓ)实现退火策略,层数ℓ增加时温度下降。BoltzFormer的核心是通过。
2025-04-13 21:38:59
108
原创 论文精度:HeightFormer:基于Transformer的体素高度预测在路边3D目标检测中的应用
在自动驾驶领域,车辆端的视觉感知系统面临视角局限性(如遮挡、短距离感知)和安全挑战。相比之下,路边摄像头通过高位安装,可覆盖更广的感知范围(如交叉路口、高速公路),显著提升系统的全局视角和长距离感知能力,降低遮挡影响。因此,基于路边摄像头的3D目标检测成为近年研究热点。
2025-04-13 21:24:56
65
原创 论文精度:基于LVNet的高效混合架构:多帧红外小目标检测新突破
LVNet通过CNN-Transformer混合架构特征提取:多尺度CNN保留低层细节时空建模:U型Transformer保持运动一致性工程落地:轻量设计适配边缘设备跨模态融合(可见光+红外)自监督学习缓解标注成本三维时空注意力机制优化论文价值:为弱小目标检测提供了新的架构设计思路,验证了低层特征学习的重要性,在军事和民用领域具有广泛的应用前景。
2025-04-12 23:21:52
1016
原创 论文精度:YOLOMG:基于视觉的无人机间检测算法——外观与像素级运动融合详解
论文标题作者发表:未明确会议/期刊(推测为预印本或待发表)核心贡献:提出一种结合外观与运动特征的轻量级无人机检测框架,解决复杂背景与微小目标检测难题,并发布首个超小目标无人机检测数据集ARD100。优势总结运动差异图有效增强小目标特征轻量化设计兼顾精度与速度(133 FPS)在0.01%面积占比目标检测中AP提升22%未来方向融合时序信息处理静止目标优化模型适应更极端光照条件开发嵌入式部署方案。
2025-04-12 23:14:59
258
原创 论文精读:MSCA-Net:多尺度上下文聚合网络在红外小目标检测中的突破
MSCA-Net通过多尺度特征融合跨维度注意力机制和通道优化策略,在红外小目标检测中实现了SOTA性能。其模块化设计思路为其他低信噪比场景的检测任务提供了重要参考。随着硬件算力的提升,该算法在实时监控系统中的部署前景广阔。
2025-04-11 23:34:18
145
原创 什么是知识图谱
随后,知识图谱作为系统的核心知识库,为问题解答提供了丰富的背景知识和上下文信息。通过知识抽取,我们可以将这些不同来源的信息转化为知识图谱中的实体、关系和属性,为后续的知识融合和应用奠定基础。通过这种结构化的表示方式,知识图谱能够清晰地描述实体之间的复杂关系,为智能系统提供强大的知识支持。进一步扩展了RDF的表达能力,支持更复杂的语义关系和推理规则,为知识图谱的语义丰富性提供了强大支持。知识图谱在智能问答系统中扮演着至关重要的角色,为系统提供了结构化的知识库,使系统能够更准确地理解和推理用户的问题。
2025-04-11 10:07:21
1092
原创 GSO-YOLO:基于全局稳定性优化的建筑工地目标检测算法解析
GSO-YOLO: Global Stability Optimization YOLO for Construction Site Detection》提出了一种针对建筑工地复杂场景优化的目标检测模型。通过融合。
2025-04-10 21:44:56
79
基于Hive的大数据分析与智能分类推荐系统-多媒体作品集管理解决方案
2025-01-15
神经网络源码-GoogLeNet源码
2024-11-22
神经网络源码+AlexNet模型源码+人工智能
2024-11-22
人工智能KAN神经网络+python代码
2024-11-22
基于PyTorch的故障检测CNN模型训练与应用
2024-11-22
基于一维CNN和LSTM的融合网络用于时间序列数据的预测分类
2024-10-19
机器学习基于鸢尾花数据集的决策树与随机森林分类模型对比:特征工程、模型训练及性能评估
2025-04-28
医学领域基于CatBoost与贝叶斯优化的高原脑水肿风险预测模型研究:多模态数据挖掘与性能评估
2025-04-28
【软件工程、计算机专业】基于Java SSM的图书管理系统开发与实现:需求分析、架构设计及性能优化摘要
2025-04-28
【无人机识别技术】基于射频信号与改进视觉Transformer的无人机检测与识别系统设计
2025-04-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人