pandas.read_csv 参数详解

pandas.read_csv 参数详解
参考:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

基础参数

参数类型含义
filepath_or_bufferstr, path object, or file-like object有效URL,可用URL类型包括:http, ftp, s3和文件。
sepstr, default ‘,’指定分隔符。
如果不指定参数,则会尝试使用逗号分隔。
分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。
正则表达式例子:\r\t
delimiterstr, default None定界符,备选分隔符(如果指定该参数,则sep参数失效)

列、索引、名称

参数类型含义
headerint or list of ints, default ‘infer’指定行数用来作为列名,数据开始行数。
如果文件中没有列名,则默认为 0,否则设置为None
如果明确设定 header=0 就会替换掉原来存在列名。
header参数可以是一个list。
例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉(例如本例中的2;本例中的数据1,2,4行将被作为多级标题出现,第3行数据将被丢弃,dataframe的数据从第5行开始。)。
注意:如果skip_blank_lines=True 那么header参数忽略注释行和空行,所以 header=0 表示第一行数据而不是文件的第一行。
namesarray-like, default None用于结果的列名列表,如果数据文件中没有列标题行,就需要执行header=None
默认列表中不能出现重复,除非设定参数 mangle_dupe_cols=True
index_colint or sequence or False, default None用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。
如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。
usecolsarray-like, default None返回一个数据子集,该列表中的值必须可以对应到文件中的位置(数字可以对应到指定的列)或者是字符传为文件中的列名。
例如:usecols有效参数可能是 [0,1,2]或者是 [‘foo’, ‘bar’, ‘baz’]。使用这个参数可以加快加载速度并降低内存消耗。
squeezeboolean, default False如果文件值包含一列,则返回一个Series
prefixstr, default None在没有列标题时,给列添加前缀。例如:添加‘X’ 成为 X0, X1, …
mangle_dupe_colsboolean, default True重复的列,将‘X’…’X’表示为‘X.0’…’X.N’。如果设定为false则会将所有重名列覆盖。

一般解析配置

参数类型含义
dtypeType name or dict of column -> type, default None每列数据的数据类型。例如 {‘a’: np.float64, ‘b’: np.int32}
engine{‘c’, ‘python’}, optional要使用的解析器引擎。C引擎更快,而python引擎目前功能更完整。
convertersdict, default None列转换函数的字典。key可以是列名或者列的序号。
true_valueslist, default NoneValues to consider as True
false_valueslist, default NoneValues to consider as False
skipinitialspaceboolean, default False忽略分隔符后的空白(默认为False,即不忽略).
skiprowslist-like or integer, default None需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。
skipfooterint, default 0从文件尾部开始忽略。 (c引擎不支持)
skip_footerint, default 0不推荐使用:建议使用skipfooter ,功能一样。
nrowsint, default None需要读取的行数(从文件头开始算起)。

缺失数据处理

参数类型含义
na_valuesscalar, str, list-like, or dict, default None一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。
默认为‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’`.
keep_default_nabool, default True如果指定na_values参数,并且 keep_default_na=False,那么默认的NaN将被覆盖,否则添加。
na_filterboolean, default True是否检查丢失值(空字符串或者是空值)。对于大文件来说数据集中没有空值,设定 na_filter=False 可以提升读取速度。
verboseboolean, default False是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。
skip_blank_linesboolean, default True如果为True,则跳过空行;否则记为NaN。

Datetime 处理

参数类型含义
parse_datesboolean or list of ints or names or list of lists or dict, default Falseboolean. True -> 解析索引
list of ints or names. e.g. If [1, 2, 3] -> 解析1,2,3列的值作为独立的日期列;
list of lists. e.g. If [[1, 3]] -> 合并1,3列作为一个日期列使用
dict, e.g. {‘foo’ : [1, 3]} -> 将1,3列合并,并给合并后的列起名为"foo"
infer_datetime_formatboolean, default False如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。在某些情况下会快5~10倍。
keep_date_colboolean, default False如果连接多列解析日期,则保持参与连接的列。默认为False。
date_parserfunction, default None用于解析日期的函数,默认使用dateutil.parser.parser来做转换。
Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。
1.使用一个或者多个arrays(由parse_dates指定)作为参数;
2.连接指定多列字符串作为一个列作为参数;
3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。
dayfirstboolean, default FalseDD/MM格式的日期类型

iterator 处理

参数类型含义
iteratorboolean, default False返回一个TextFileReader 对象,以便逐块处理文件。
chunksizeint, default None文件块的大小, See IO Tools docs for more informationon iterator and chunksize.

引用、压缩文件、格式

参数类型含义
compression{‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’直接使用磁盘上的压缩文件。
如果使用infer参数,则使用 gzip, bz2, zip或者解压文件名中以‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’这些为后缀的文件,否则不解压。
如果使用zip,那么ZIP包中国必须只包含一个文件。
设置为None则不解压。
新版本0.18.1版本支持zip和xz解压
thousandsstr, default None千分位分割符,如“,”或者“."
decimalstr, default ‘.’字符中的小数点 (例如:欧洲数据使用’,‘).
lineterminatorstr (length 1), default None行分割符,只在C解析器下使用。
quotecharstr (length 1), optional引号,用作标识开始和解释的字符,引号内的分割符将被忽略。
quotingint or csv.QUOTE_* instance, default 0控制csv中的引号常量。可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)
doublequoteboolean, default True双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,使用双引号表示引号内的元素作为一个元素使用。
escapecharstr (length 1), default None当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。
commentstr, default None标识着多余的行不被解析。
如果该字符出现在行首,这一行将被全部忽略。
这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。
例如如果指定comment=’#’ 解析‘#empty\na,b,c\n1,2,3’ 以header=0 那么返回结果将是以’a,b,c’作为header。
encodingstr, default None指定字符集类型,通常指定为’utf-8’. List of Python standard encodings
dialectstr or csv.Dialect instance, default None如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档
tupleize_colsboolean, default FalseLeave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

错误处理

参数类型含义
error_bad_linesboolean, default True如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。
warn_bad_linesboolean, default True如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。

内部

参数类型含义
delim_whitespaceboolean, default False.指定空格(例如’ ‘或者’ ‘)是否作为分隔符使用,等效于设定sep=’\s+’。如果这个参数设定为Ture那么delimiter 参数失效。
low_memoryboolean, default True分块加载到内存,再低内存消耗中解析。
但是可能出现类型混淆。确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效)
buffer_linesint, default None不推荐使用,这个参数将会在未来版本移除,因为他的值在解析器中不推荐使用
memory_mapboolean, default False如果使用的文件在内存内,那么直接map文件使用。使用这种方式可以避免文件再次进行IO操作。
float_precisionstring, default NoneSpecifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.
指定
def parser_f(filepath_or_buffer,
                 sep=sep,
                 delimiter=None,

                 # Column and Index Locations and Names
                 header='infer',
                 names=None,
                 index_col=None,
                 usecols=None,
                 squeeze=False,
                 prefix=None,
                 mangle_dupe_cols=True,

                 # General Parsing Configuration
                 dtype=None,
                 engine=None,
                 converters=None,
                 true_values=None,
                 false_values=None,
                 skipinitialspace=False,
                 skiprows=None,
                 skipfooter=0,
                 nrows=None,

                 # NA and Missing Data Handling
                 na_values=None,
                 keep_default_na=True,
                 na_filter=True,
                 verbose=False,
                 skip_blank_lines=True,

                 # Datetime Handling
                 parse_dates=False,
                 infer_datetime_format=False,
                 keep_date_col=False,
                 date_parser=None,
                 dayfirst=False,

                 # Iteration
                 iterator=False,
                 chunksize=None,

                 # Quoting, Compression, and File Format
                 compression='infer',
                 thousands=None,
                 decimal=b'.',
                 lineterminator=None,
                 quotechar='"',
                 quoting=csv.QUOTE_MINIMAL,
                 doublequote=True,
                 escapechar=None,
                 comment=None,
                 encoding=None,
                 dialect=None,
                 tupleize_cols=None,

                 # Error Handling
                 error_bad_lines=True,
                 warn_bad_lines=True,

                 # Internal
                 delim_whitespace=False,
                 low_memory=_c_parser_defaults['low_memory'],
                 memory_map=False,
                 float_precision=None):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值