离散数学概论---(8)图论:图的基本概念

图论创立

柯尼斯堡七桥问题的解决是图论创立的标志
在这里插入图片描述
能不能每条路只经过一次,把七座桥遍历一遍???
结论:没有人可以

1736年欧拉在发布论文中证明七桥无法仅走一遍能遍历七座桥
并提出和解决了"一笔画”问题

欧拉将现实问题抽象为平面上的点和线的组合,并通过讨论点的奇偶性来判定能否遍历

图(Graph)的定义

结点和连结结点的所构成的离散结构
记做G=<V, E>
结点vertex集V:非空集合
边edge集E:多重集合(集合中可能存在相同元素,元素附带一个重数的属性)
边集的多种集合表示图可以有多个相同的边

边和结点的关系

有向边(directed edge)用结点的二元有序组表示
第一分量称作起点,第二分量称为终点
无向边(indirected edge)用结点的两元素多重集表示
无所有起点终点。
无相变可以是多重集意味着允许无向环(loop)

把只包含有有向边的图称为有向图
如果图里全是无向边的话,那么就称为无向图。
无向边的端点称为邻接(adjacent)结点

图的例子

在这里插入图片描述
左图 中有两个{a ,c},称为平行的边,一样的。它在边集里是一个多重集,是一个双重集合。{c,c}自身环
右图为有向图

图的基本概念

对于图G=<V, E>
有限图:V,E都是有限集,否则称为无限图
重边 multiple edge:E中重数大于1的边称为重边(平行边)
无向图可以有重边,有向图也可以有重边,在重边的时候,我们就需要请出多重集合,这样的表示方式来进行表示。
如果边集当中,至少有一个元素的重数大于1的话,也就是说它至少包含一对重边,我们就把这种图称之为重图,或者叫多重图。
重图multigraph:边集R中至少有一个元素重数大于1
单图:每条边的重数都等于1
简单图simple graph:无环和重边的无向图
后面讨论中,基本都讨论简单图。
完全图:complete graph:任何两个不同结点间都有边关联的简单图,记做Kn
在这里插入图片描述

这都是完全图

孤立结点 isolated vertex:不是任何边的端点的结点
零图:仅有孤立结点构成的图(E=∅)

普通的图只有边集和顶点集,就是它们只由这两个集合构成。
我们还会研究更复杂的一些图,这些图会在边或者结点上附加一些属性。我们就把这种附加了属性的图称之为赋权图。

这样的的赋权图,它需要在原来的V,E上进行扩展。
扩展出两个成分,一个是结点的权函数f,它是从V到W的一个函数。另外一个函数称之为g,是边的权函数,它给每条边都附加了一个属性,
结点的权函数和边的权函数,都是从V到W或者E到W。这样的函数的映射。W可以是任何的集合。
在这里插入图片描述
经常的我们会给结点或者边,附加的属性是一个数值。就是一个实数的子集。
通常来解决现实当中更加复杂的一些问题。
如果一个图没有附加上这些数量的属性的话,就是普通的图,我们主要研究结点和边之间的一种成为拓扑关系。
这种拓扑关系,比如,结点和结点之间是否邻接啊,然后一个结点到另外一个结点是否连通,它是否有路径能够走到那,或者说,我们就研究两个结点之间有多少条通路。能够有多少种方法来到达另外一个结点,或者,这个图它依据连通性能够分成几大块,就是划分上这些性质,都叫着拓扑关系。
在这里插入图片描述
在这里插入图片描述

赋权图是空间网络研究的基础。
在这里插入图片描述
在这里插入图片描述

结点的度(degree)

端点v的d(v)定义为关联端点v的边的数目
有向图中,度分为出度(out-degree)和入度(in-degree)
出度d+(v)是端点v作为有向边起点的数目
入度d-(v)是端点v作为有向边终点的数目
有向图中度d(v)=d+(v)+ d-(v)
在这里插入图片描述
a的度为2 b的度为1 c的度为5,自环算两次

在这里插入图片描述
a ′ a^{'} a的出度为2,入度为0,总度为2
b ′ b^{'} b的出度为1,入度为0,总度为1
c ′ c^{'} c的出度为1,入度为4,总度为5

度的性质

所有端点度的总和为偶数,而且是边数目的两倍
有向图中出度的总和等于入度的总和
奇数度结点必定为偶数个(反证法可证
自然数序列(a1,a2…an)是某个图的度序列当且仅当序列中所有数的总和为偶数
一度的顶点称为悬挂点(pendant node)

正则图(regular graph)

所有顶点的度均相同的图称为正则图,按照顶点的度数k称作k-正则图
Kn是n-1正则图
在这里插入图片描述

子图(subgraph)

G1=<V1, E1>, G2 = <V2 , E2 >
V1 ⊆ \subseteq V2,E1 ⊆ \subseteq E2,称G1是G2的子图。
在这里插入图片描述
中间的图和右侧的图,都是左边图的子图
如果G1≠G2,则G1是G2的真子图。
生成子图 spanning subgraph
如果G1是G2的子图,且V1=V2 就说G1是G2的生成子图
只要在G1中添加若干条边,不需要添加结点,就能达到G2
中间红色,右侧绿色都是左边蓝色的生成子图。

补图

G1,G2互为补图;
V1=V2,E1 ∩ E2= ∅,<V1, E1 ∪ E2>是完全图
在这里插入图片描述
红图和绿图叠在一起,正好是蓝图。
红色和绿色称为 互为补图

图的同构 isomorphic

G1 = <V1, E1>,G2 = <V2, E2>
|V1| = |V2| |E1|=|E2|
如果可以将V1 中所有的结点一一对应
地置换为V2中的结点名后得到的图等于G2
双射函数,V1映射为V2,E1变成E2。称这两个图是同构的图

在这里插入图片描述

不同构的图:化学中的同分异构体

分子式相同而结构和性质不同的化合物之间互称同分异构体
分子式相同意味着V1=V2, |E1| = |E2|
在这里插入图片描述

拟路径(pseudo path)

顶点v1到vn拟路径:
v1,e1,v2,e2,v3,e3,… ,vn-1, en-1,vn, en

从v1开始,到vn结束。
顶点,边,顶点,边这个顺序排列。
其中ei = <vi, vi+1>(或者{vi, vi+1})
有向图是二元组,无向图是集合。
拟路径中的边数目称为拟路径的长度

拟路径例子:
在这里插入图片描述

a,1,e,7,b,3,c,3,b,2,a,拟路径长度为5
c,4,e,4,c,3,b,7,e,4,c 拟路径长度为5
有重复的边,还有重复的点。并没有限制。

路径(walk)与通路(path)
如果拟路径中的边各不相同,称作路径
a,1,e,7,b,3,c,4,e,6,d
如果路径中的顶点各不相同,称作通路
a,1,e,7,b,3,c,5,d

v1 = vn 的路径称为闭路径
a,2,b,7,e,4,c,5,d,6,e,1,a
vsub>1 = vsub>n 的通路称作回路
a,1,e,6,d,5,c,3,b,2,a
回路没有相同的边也没有相同的顶点(除了第一个和最后一个)

路径与通路的性质

路径和通路定理
在有n个顶点的图G中,如果有顶点u到v的拟路径,那么u到v必有路径,并且必有长度不大于n-1通路

有拟路径,必有路径,必有不大于n-1的通路
(考虑拟路径重复顶点的压缩)(先考虑边压缩,再考虑点压缩)

闭路径和回路定理
在有n个顶点的图G中,如果有顶点v到v的闭路径,那么必定有一条从v到v的长度不大于n的回路

图的连通性

u可达v(accessible)
u=v,或者存在一条u到v的路径
连通无向图(connected)
在这里插入图片描述

无向图中任意两个顶点都是可达
强连通有向图
有向图中任意两个顶点都是互相可达

单向连通有向图
任意两个顶点,至少从一个顶点到另一个是可达的
在这里插入图片描述

弱连通有向图
将有向图看作无向图时是连通的

连通分支(connected component)

图G的连通子图G’,而且G‘不是任何其他连通子图的真子图(最大性

在这里插入图片描述
七个顶点,七条边组成的。像是被分成两个部分,两个岛屿。

两个部分是两个连通分支。

欧拉图与欧拉路径

欧拉图 Euler graph
如果图G上有一条经过所有顶点、所有边闭路径(边不重复,运行顶点重复)

那么如果存在这样一条闭路径的图,我们称之为欧拉图。

欧拉路径Euler walk
如果图G上有一条经过所有顶点、所有边路径(边不重复,允许顶点重复)

充分必要条件

欧拉图
无向图:G连通,所有顶点的度都是偶数
有向图:G弱连通,每个顶点的出度与入度相等

欧拉路径
无向图:G连通,恰好两个顶点的度是奇数
有向图:G连通,恰有两个顶点出度与入度不相等,其中一个出度比入度多1,另一个入度比出度多1

在这里插入图片描述

上面是七桥问题不满足一笔画
下面两个能够一笔画

哈密顿图

哈密顿图 Hamiltion graph
如果图G上有一条经过所有顶点的回路(不要求经过所有边, 也称作哈密顿回路)
在这里插入图片描述

正十二面体,每个面都是正五边形。
能不能只经过这些顶点一次,可以周游世界???
拍扁了看。透射到平面上。

有20个顶点的图。

哈密顿通路 Hamiltion path

如果图G上有一条经过所有顶点的通路(非回路)就叫做哈密顿通路

判定定理(充分非必要)
哈密顿图比欧拉图难得多

如果具有n个顶点的图G的每一对顶点的度数之和都不小于n-1,那么G中有一条哈密顿通路
如果G中的每一对顶点度数之和不小于n,且n>=3, 则G为一哈密顿图

哈密顿通路问题在上个世纪七十年代被证明是“NP完全的”(算法随顶点个数呈指数增长)

实际上对于某些顶点数不到100的网络,利用现状最好的算法和计算机也需要比较黄铜的时间(比如几百年)才能确定其是否存在一条这样的通路。
(现在数据安全问题,都是拜这些问题所赐)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值