机器学习:波士顿房价数据集

        波士顿房价数据集是一个经典的回归数据集,最初由美国国立卫生研究院(NIH)提供,现已成为机器学习和统计学习的常用数据集之一。该数据集主要用于探索性数据分析、回归模型构建以及学习如何识别特征与目标变量之间的关系。

1. 数据集目的

        波士顿房价数据集的主要目的是预测波士顿地区的房价。该数据集包含多个特征变量,这些特征反映了不同区域的社会经济特征,这些特征可能与房价相关。

2. 数据集特点

        样本数量: 506个样本。
        特征数量: 13个特征变量,描述了不同的社会经济和环境因素。
        目标变量: 房屋的中位数价格(MEDV),以千美元为单位。

3. 特征变量

波士顿房价数据集包含以下特征:

        3.1 CRIM: 每人犯罪率。
        3.2 ZN: 住宅用地超过 25,000 平方英尺的比例。
        3.3 INDUS: 每个城镇非零售商用土地的比例。
        3.4 CHAS: 查尔斯河的虚拟变量(如果靠近河流,值为1;否则为0)。
        3.5 NOX: 一氧化氮浓度(以部分百万计)。
        3.6 RM: 每个住宅的平均房间数。
        3.7 AGE: 1940年之前建成的自用房屋的比例。
        3.8 DIS: 距离波士顿五个中心区域的加权距离。
        3.9 RAD: 高速公路可达性指数。
        3.10 TAX: 每 $10,000 的财产税率。
        3.11 PTRATIO: 城镇的小学师生比例。
        3.12 B: 1000(Bk - 0.63)²,其中 Bk 是属于黑人的比例。
        3.13 LSTAT: 低收入人口的比例(以百分比表示)。

4. 目标变量

        MEDV: 该地区房屋的中位数价格,以千美元为单位。

5. 数据集使用场景

波士顿房价数据集常用于以下场景:

        回归模型的培训和测试: 适合初学者进行线性回归、岭回归、LASSO 回归等模型的构建和评估。
        数据可视化: 通过散点图、热力图等可视化分析特征与房价之间的关系。
        特征工程: 学习如何通过特征选择和特征变换来改善模型性能。

6. 伦理问题

        需要注意的是,该数据集已经受到了一些伦理争议,尤其是使用了可能引发偏见的特征(如 B 变量,即与黑人比例相关的特征)。因此,在使用此数据集时,需要关注数据的社会影响和伦理性,并谨慎解释结果。

7. 替代数据集

由于上述伦理问题,`scikit-learn` 计划逐步移除波士顿房价数据集。建议采用房价的现代数据集,如加利福尼亚房价数据集(`fetch_california_housing`),该数据集在现代实践中使用更为广泛,且不涉及敏感的社会经济特征。

8. 数据加载

在 `scikit-learn` 中,可以通过以下代码加载波士顿房价数据集:

from sklearn.datasets import load_boston  

# 加载数据集  
boston = load_boston()  

# 获取特征和目标变量  
X = boston.data  # 特征数据  
y = boston.target  # 目标数据  

# 获取特征名称  
feature_names = boston.feature_names

9. 结论

波士顿房价数据集是机器学习和数据分析领域的重要学习资料,适合教学、实践和探索回归模型的基本原理与技术。本数据集虽然简单易用,但在实际应用中须注意相关的伦理问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

00&00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值